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Abstract—Consideration was given to the problem of maximum achievable precision of linear
systems with discrete state and output controllers. The external perturbations affecting the
system are the bounded step-type and harmonic (of unknown frequency) vector functions of
time which the control theory regards as standard. The condition for asymptotic stability
of the closed-loop system is the only requirement on the controllers aside from their physical
realizability. Therefore, the conclusions of the present paper apply to the entire set of the
discrete stabilizing controllers, no matter what method was used to design them.
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1. INTRODUCTION

For the continuous systems, there are control laws providing an arbitrarily high control precision.
This is possible, for example, if the external perturbations and control actions are applied to
the same point and the control law is designed from the full state vector on the basis of the
LQ procedures [1] of the H∞-optimization [2]. As follows from [3–5], these systems admit an
unbounded increase in the controller gains without loss of asymptotic stability of the closed-loop
system, which enables an arbitrarily high control precision.

For the discrete systems, a high transfer coefficient defining precision of the open-loop system
cannot be provided without loss in stability of the closed-loop system. For the single-input single-
output systems of first and second orders, this was noticed by Ya.Z. Tsypkin [6]. It is due to the fact
that the Nyquist plot of the discrete-time systems intersects without fail the segment [−1; 0] of the
real axis, which is indicative of impossibility of the unbounded increase in the transfer coefficient
of the open-loop system without loss in stability.

As follows from [4, 7, 8], in distinction to the continuous case, the discrete counterparts of the
procedures of LQ-optimization do not admit an unbounded increase in the controller gains without
loss in the stability of the closed-loop system. It is indicative of the fundamental impossibility of
providing an arbitrarily high control precision in the systems with discrete-time controllers. The
present paper is devoted to studying this phenomenon.

Bounded precision of the systems with discrete-time controllers is the fundamental distinction
of the discrete-time systems (with time quantization) as compared with the continuous systems.
This is explained by the specificity of their modal stability domain having the form of the unit
circle. The lower the system order and the greater the period of quantization of the discrete-time
controller, the stronger the effect of this fundamental constraint.

Consequently, at using the discrete-time control one can imply only some maximum control
precision achievable for the given period of quantization of the discrete-time controller. Attention
was drawn to this fact for the first time in [9]. For the step-type external perturbations, some
results were obtained in 1994 [10] also for the output controllers.
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The present paper considers this problem for the arbitrary-order plants both in the one-di-
mensional and multidimensional cases. Generally speaking, in the continuous case the maximum
precision was first considered in [11, 12] from the standpoint of the limiting value of the quadratic
functional at parrying arbitrary initial conditions, rather than suppression of the external per-
turbations. Later on A.A. Pervozvanskii and M.A. Pasumanskii considered this issue from the
positions of reducing the impact of the external perturbations in the sense of the limiting value
H2 and H∞-norm [13]. We notice, however, that the results of [13] almost repeat the conclusions
of [11, 12], that is, come to the fact that the plant must be minimal phase with the same number
of controls and measurements coinciding with the controlled variables, and disregard the point of
application of the external perturbations and control actions, which is extremely important [5, 14].
The problem of precision of the continuous and discrete-time systems was considered at the same
time internationally in [15–17].

The present paper proposes in essence a different approach to the problem of precision relying
on the estimation of the maximal possible transfer coefficient of the open-loop system (or the value
of the recurrent difference at the frequency of the external perturbation) which defines the precision
characteristics of the closed-loop system. The study is carried out both for the one-dimensional
(scalar) control and the multidimensional (vector) control.

It deserves noting that the vanishing limiting error of the weight coefficient under the control in
quadratic functional (the case of “inexpensive” control) was established in [18] after the appearance
of [9, 10] devoted to the maximal transfer coefficient of the discrete-time state LQ-controllers. The
same result was established in [19] for the output controllers based on the reduced-order Luenberger
observer. We notice that constraint of the precision of discrete-time systems follows immediately
from the problem of l1-optimal control [20–23].

2. FULL STATE VECTOR CONTROLLERS

2.1. Formulation of the Problem

Let us consider a fully controllable plant with the discrete model given by

x(k + 1) = Ax(k) +B1w(k) +B2u(k), x ∈ Rn, u ∈ Rm, w ∈ Rμ,

z(k) = Cx(k), k = 0, 1, 2, . . . , z ∈ Rm1 ,
(2.1)

where x is the measurable plant state vector; u is the control action vector; w is the perturbation
vector; z is the vector of plant controllable variables; and A,B1, B2, C are certain matrices of the
corresponding sizes.

We confine consideration to the case of coinciding points of application of the control and
perturbing actions, the number of the control actions and controlled variables being the same:

B1 = B2, m = m1 = μ. (2.2)

In the continuous case, the last condition ensures knowingly existence of the full state-vector con-
troller providing an arbitrarily high control precision [1, 5]. This allows one to characterize more
prominently the precision of the discrete-time controllers as compared with the continuous ones.

We embrace plant (2.1) by a discrete-time state controller

u(k) = Kx(k) (2.3)

with parameters established by any of the existing methods providing asymptotic stability of the
closed-loop system (2.1), (2.3) for w = 0.
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We establish relation between the vectors of controlled variables and perturbing actions in the
closed-loop system (2.1), (2.3). Since for the controlled plant W0(q) = C(qI − A)−1B2, q being
the operator of time shift ahead by one step, the matrix of transfer from u to z is independent of
the controller parameters, the properties of the closed-loop system and, in particular, its precision
characteristics are wholly defined by the frequency properties of the recurrent difference matrix
[5, 7]:

V (q) = Im +Wp(q). (2.4)

Here, Wp = −K(qI − A)−1B2 is the transfer matrix of the open-loop system (2.1), (2.3) in plant
inputs (variable u) and Im is the (m×m) identity matrix.

The inverse matrix of V (q) is involved in the expression of the operator transfer matrix (from w
to z) of the closed-loop system [5, 7]:

Tzw(q) = W0(q)[Im +Wp(q)]
−1, z(k) = Tzw(q)w(k). (2.5)

The present paper aims at studying the frequency characteristics of the recurrent difference
matrix (2.4) in system (2.1), (2.2) with the discrete-time state controller (2.3) and estimating
the maximum achievable values of the steady-state control errors under the action of standard
bounded step-type and harmonic external perturbations. Prior to considering the general case of
vector control and vector controllable variable, we consider the scalar case.

2.2. Scalar Control

Let us consider the case of single control action and single controlled variable m = m1 = μ = 1.
As follows from (2.5), the expression for the controlled variable is given by

z(k) =
w0(q)

1 + wp(q)
w(k), (2.6)

where w0, wp are the transfer functions of the controlled plant and the open-loop system, respec-
tively; w(k) and z(k) are the external perturbation and the controlled variable at the current
kth instant of the discrete time.

We assume that the external perturbation is constant w(k) = const = w∗, where w∗ > 0 is the
perturbation amplitude. According to the theorem of limiting values [12, 17, 24, 25], for the steady
value of the controlled variable (control error) it then follows from (2.6) that

lim
k→∞

z(k) = z(∞) =
w0(1)

1 + wp(1)
w∗ =

k0
1 + kp

w∗, (2.7)

where, as is known from [7, 12, 17, 24–26],

k0 = w0(q)|q=1
= w0(1) and kp = wp(q)|q=1

= wp(1) (2.8)

are called the transfer coefficients (gains), respectively, of the controlled plant and open-loop
discrete-time system. One can see from (2.7) that the greater the transfer coefficient of the open
loop kp, the smaller the steady-state error of control because the numerator (2.7) is independent of
the controller coefficients and is defined only by the plant properties. In the discrete case, however,
this transfer coefficient is in essence bounded from above, which gives rise to the need for determin-
ing the maximum achievable control error in the systems with the discrete-time controller. This
fact is established by the following theorem.
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Theorem 1. Under a constant external perturbation w(k) = const = w∗ > 0, the transfer co-
efficient of the open-loop discrete-time system (2.1), (2.3) with scalar control and the maximum
achievable control error satisfy the inequalities

|1 + kp| < 2n

|d(1)| , d(1) = d(q)
∣
∣
∣
q=1

�= 0, d(q) = det(qIn −A), (2.9)

|z(∞)| > |k0| |d(1)|
2n

w∗. (2.10)

Theorem 1 is proved in the Appendix.

Remark 1. Inequality (2.9) makes sense if the characteristic polynomial of the open-loop system
d(q) = det(qIn−A) has no roots at the point q = 1 (the plant has no integrating units). Otherwise,
this polynomial is representable as d(q) = (q−1)ld1(q), where l is the multiplicity of the root q = 1
and the polynomial d1(q) has no roots at the point q = 1. In this case, the transfer coefficient of
the plant and the gain of the open-loop system are given by

k0 = [(q − 1)lw0(q)]
∣
∣
∣
q=1

, kp = [(q − 1)lwp(q)]
∣
∣
∣
q=1

. (2.11)

By multiplying the numerator and denominator in the right side of (2.6) by (q − 1)l we then
obtain for the steady-state control error that

z(∞) =
(q − 1)lw0(q)

(q − 1)l + (q − 1)lwp(q)

∣
∣
∣
∣
∣
q=1

w∗ =
k0
kp

w∗. (2.12)

Having first multiplied both sides of the identity (A.1) by (q − 1)l), similar to the proof of
Theorem 1 one can demonstrate that the transfer coefficient of the open-loop system and the
maximum achievable control error satisfy the inequalities

|kp| < 2n

|d1(1)| , d1(1) �= 0, |z(∞)| > |k0| |d1(1)|
2n

w∗. (2.13)

Now we assume that the external perturbation is a harmonic lattice function like w(k) =
w∗ sin(ωkT ), where w∗ > 0 is the perturbation amplitude, ω is the circular frequency (unknown
as a rule), and T is the period of discreteness (quantization) of the discrete-time controller (2.3).
According to the classical theory of linear discrete-time systems [12, 17, 24, 25], the amplitude a > 0
of the steady-state output oscillations of the controlled variable

lim
k→∞

z(k) = a sin(ωkT + φ), k = 0, 1, 2, . . . (2.14)

(φ is the phase shift relative to the input harmonic) can be established from

a = |Tzw(e
jωT )|w∗ =

|w0(e
jωT )|

|1 + wp(ejωT )| w
∗, (2.15)

where Tzw(q) is the transfer function of the closed-loop system from (2.6).

The denominator in (2.15) includes the magnitude of the recurrent difference calculated at the
frequency ω of the external perturbation. The greater this magnitude, the smaller the amplitude a
of forced oscillations of the controlled variable z. However, as is established in Theorem 2, in the
discrete case this value is always bounded from above and, consequently, there exists a maximum
achievable amplitude of oscillations of the controlled variable which in essence cannot by reduced
by the state controller (2.3).
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Theorem 2. Under the harmonic external perturbation w(k) = w∗ sin(ωkT ), the recurrent dif-
ference of the discrete-time system (2.1), (2.3) with scalar control and the maximum achievable
amplitude of the control error satisfy the inequalities

|1 + wp(e
jωT )| < 2n

|d(ejωT )| , d(ejωT ) �= 0, (2.16)

a >
|w0(e

jωT )| |d(ejωT )|
2n

w∗ (2.17)

for all real frequencies ω ∈ [0, π/T ].

Theorem 2 is proved in the Appendix.

Remark 2. Theorem 1 follows from Theorem 2 under the zero frequency of the external pertur-
bation ω = 0. One can also conclude from (2.9) and (2.16) that the greater the order of the plant
n, the greater the magnitudes of the maximum transfer coefficient of the open-loop discrete-time
system (recurrent difference at the zero frequency) and the recurrent difference calculated at the
frequency of the external perturbation. If the roots of the characteristic polynomial D(q) of the
closed-loop system (2.1), (2.3) approach the boundary of the unit circle, then these values are max-
imized, which leads to minimization of the steady-state control error. In particular, if qi → −1,
i = 1, n, then the transfer coefficient of the open-loop system is maximized. If qi → −e−jωT ,
i = 1, n, the magnitude of the recurrent difference at the frequency of external perturbation is
maximized. One can easily make sure of this fact from the geometric interpretation of the mag-
nitude of the ith multiplier |ejωT − qi| of the expansion |D(ejωT )| shown in the figure. However,
assignment of such roots of the polynomial D(q) (for example, by means of the procedure of modal
control) leads, obviously, to prolonged and oscillatory transients in the closed-loop system.

2.3. Vector Control

As before, we assume that condition (2.2) is satisfied and consider first the case of constant
external perturbations w(k) = const = w∗, where w∗ = [w∗

1 , w
∗
2, . . . , w

∗
m]T is the vector of perturba-

tion amplitudes and T denotes the matrix transposition. Then, the vector of steady-state control
errors is established from the following equality [12, 17, 24, 25]:

lim
k→∞

z(k) = z(∞) = W0(1)[Im +Wp(1)]
−1w∗. (2.18)

By assuming that q = 1 is not a root of the numerator detW0(q), that is, zero of the plant and
the plant is statically definable [14] because, otherwise, there will be an infinite number of vectors
w∗ �= 0 such that z(∞) = 0, we express from (2.18) the vector w∗ for m1 = m = μ, B1 = B2 as

[Im +Wp(1)] W0
−1(1)z(∞) = w∗
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and generate the quadratic form

zT(∞)[W0
−1(1)]T [Im +Wp(1)]

T [Im +Wp(1)] W0
−1(1)z(∞) = (w∗)T w∗. (2.19)

We notice that the control law (2.3) defines the matrix of recurrent difference V (q) = Im+Wp(q)
that appears in the left side of the latter equality and is calculated for q = 1, q = ejωT , ω = 0 at
the zero frequency. It follows from (2.19) that the values of the static errors depend on the positive
definite symmetrical matrix V T(1)V (1) representable as [27]

V TV = U diag(σ1
2, σ2

2, . . . , σm
2)UT,

where U is the orthogonal matrix (UTU = UUT = Im) and σi
2 > 0 (i = 1,m) are the eigenvalues

of the matrix V TV (squares of the singular values of the matrix V ).

By denoting

z̃ = W0
−1z(∞), ỹ = UT z̃,

we rearrange the quadratic form (2.19) as

ỹT diag(σ1
2, σ2

2, . . . , σm
2) ỹ = (w∗)T w∗. (2.20)

We notice that in virtue of orthogonality of the matrix U the vectors z̃ and ỹ have the same
Euclidean norm because their scalar products are equal [27]:

‖ỹ‖2 = ỹTỹ = [UTz̃]T UTz̃ = z̃TU UTz̃ = z̃Tz̃ = ‖z̃‖2.

At that, the greater the norm of the vector z(∞) of static errors, the greater the norm of the
vector z̃, and, otherwise, because

z̃Tz̃ = zT(∞)[W0
−1(1)]T W0

−1(1) z(∞),

and the matrix [W0
−1(1)]T W0

−1(1) is symmetrical and positive definite.

Rearrange (2.20) in the scalar form as

m∑

i=1

ỹ2i σi
2 =

m∑

i=1

(w∗
i )

2 (2.21)

from which it follows that the greater the minimal singular value of the matrix of recurrent differ-
ence V (1), the smaller the norm of the vector ỹ which is equal to the norm of the vector z̃, and,
consequently, the smaller the norm of the static errors z(∞). In particular, this corresponds to the
well-known qualitative results for the multidimensional continuous systems [26, 28].

However, as will be established in Theorem 3, for the systems with discrete-time controllers
the minimal singular value σmin of the matrix of recurrent difference V (1) is in essence bounded
from above. As in the one-dimensional case, it is, therefore, possible to discuss the maximum
achievable precision of control estimated by the norm of the vector of steady-state control errors.
In the multidimensional case, this fact can be interpreted geometrically. Equality (2.19) implies
that the representing point of the vector of static control errors z(∞) ∈ Rm lies on the surface of
the hyperellipsoid defined by this equality. Its volume Vm in the m-dimensional space characterizes
indirectly the “value” of the vector z(∞). Bounded precision of the discrete-time systems over the
entire set of the stabilizing state controllers (2.3) means that it is impossible in principle to obtain
ellipsoid (2.19) of volume smaller than some limiting volume defined only by the properties of the
controlled plant and the norm of the external perturbation. These considerations are formulated
in the mathematical terms in the following theorem.
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Theorem 3. The minimal singular value of the matrix of recurrent difference V (q) = Im+Wp(q)
at the zero frequency (q = ejωT , ω = 0, q = 1) and the volume Vm of the hyperellipsoid (2.19)
whose surfaces belong to the representing point of the vector of static control errors z(∞) ∈ Rm

of the discrete-time multidimensional system (2.1), (2.3) under a constant external perturbation
satisfy the inequalities

σmin[Im +Wp(1)] <

[
2n

|d(1)|
]1/m

, d(1) �= 0, (2.22)

Vm >
πm/2

Γ(m/2 + 1)

|detW0(1)||d(1)|
2n

‖w∗‖m, (2.23)

where σmin[V ] is the minimal singular value of the matrix V and Γ(b) is the gamma function of the
variable b.

Theorem 3 is proved in the Appendix.

It deserves noting that Theorem 3 gives no explicit estimates of the norm of the vector of steady-
state errors. Determination of these errors is the subject matter of further discussion. For that, in
virtue of (2.18) we set down that

‖z(∞)‖2 = w∗T([Im +Wp(1)]
−1)TW0

T(1) W0(1)[Im +Wp(1)]
−1w∗ (2.24)

and transform the right side of (2.24). Since the number matrix W0
T(1) W0(1) is a positive definite

one and its eigenvalues are the squares of the singular values of the matrix W0(1), the inequalities

σ2
min[W0(1)] f

Tf � fTW T
0 (1) W0(1) f � σ2

max[W0(1)] f
Tf

will be valid for all nonzero vectors f ∈ Rm [27]. With regard for these inequalities, it is possible
to establish from (2.24) that

‖z(∞)‖2 � σ2
max[W0(1)] f

Tf, ‖z(∞)‖2 � σ2
min[W0(1)] f

Tf, (2.25)

where f = [Im +Wp(1)]
−1w∗ and σmax[V ] is the maximal singular value of the matrix V .

Now we consider the quadratic form

fTf = w∗T([Im +Wp(1)][Im +Wp(1)]
T)−1w∗.

Since [Im +Wp(1)][Im +Wp(1)]
T is a positive definite matrix and its eigenvalues are the squares of

the singular values of the matrix V (1) = [Im +Wp(1)], we can obtain the inequalities

fTf � 1

σ2
min[Im +Wp(1)]

w∗Tw∗, fTf � 1

σ2
max[Im +Wp(1)]

w∗Tw∗

with allowance for the fact that at inversion of a matrix its eigenvalues are inverted as well [27].
By substituting these inequalities in (2.25), we finally establish that the steady-state errors of the
multidimensional discrete-time system (2.1), (2.3) satisfy the inequalities

σmin[W0(1)]

σmax[Im +Wp(1)]
‖w∗‖ � ‖z(∞)‖ � σmax[W0(1)]

σmin[Im +Wp(1)]
‖w∗‖. (2.26)

We notice that, as follows from inequalities (A.7), in these inequalities there are bounded num-
bers to the left and right of the denominator. Consequently, in the multidimensional discrete-time
systems the lower boundary of the norm of the vector of static control errors is always finite.
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We consider the case of harmonic external perturbations

w(k) = w∗ sin(ωkT ), (2.27)

where w∗ ∈ Rm is the vector of amplitudes of the external perturbation, ω is the circular—generally,
unknown—frequency, and T is the discreteness (quantization) period of the discrete-time con-
troller (2.3).

According to the results of the theory of multidimensional linear discrete-time systems [12, 15,
25], the output steady-state oscillations in each of the controlled variable (control errors) are given
by

lim
k→∞

zi(k) = ai sin(ωkT + φi), i = 1,m, (2.28)

where ai and φi are, respectively, the amplitude and phase shift of the ith output harmonic relative
to the input perturbation (2.27).

We notice that the amplitudes of oscillations in each of the controlled variables are the magni-
tudes of the corresponding components of the following complex conjugate vectors [29]:

z+ = Tzw(e
jωT )w∗ejωkT , z− = Tzw(e

−jωT )w∗e−jωkT ,

where z+ and z− are partial solutions of the system of difference Eqs. (2.1), (2.3), respectively, for
w(k) = w+(k) = w∗ejωkT and w(k) = w−(k) = w∗e−jωkT [25], and Tzw(e

jωT ) is the frequency
transfer function of the closed-loop discrete-time system (2.5). Indeed, one can readily see that
the input vector (2.27) is representable as w(k) = (w+(k) − w−(k))/(2j), and one can put down
(z+ − z−)/(2j) for the output vector z with the components from (2.28) in virtue of the principle
of superposition. Therefore, we conclude that a2i = z−iz+i, where z−i and z+i are, respectively,
the ith components of the vectors z− and z+. Or else, if defined is the vector a = [a1, a2, . . . , am]T

whose coordinates the amplitudes of the harmonics (2.28), then obviously aTa = ‖a‖2 = zT−z+.
With regard for (2.5), the last equality is representable as

‖a‖2 = w∗T([Im +Wp(e
−jωT )]T)−1W0

T(e−jωT ) W0(e
jωT )[Im +Wp(e

jωT )]−1w∗. (2.29)

It is a counterpart of equality (2.24). Therefore, by similar reasoning—to within the replacement
of the real vectors by the complex ones and the positive definite matrices by the corresponding
Hermitian matrices—we obtain an evident analog of (2.26):

σmin[W0(e
jωT )]

σmax[Im +Wp(ejωT )]
‖w∗‖ � ‖a‖ � σmax[W0(e

jωT )]

σmin[Im +Wp(ejωT )]
‖w∗‖ (2.30)

bounding the Euclidean norm of the vector of amplitudes of the steady-state oscillations from
(2.28).

It is shown below that the denominator in these inequalities has bounded numbers to its left
and right. Therefore, the lower boundary of the norm of the vector of amplitudes of the control
errors in the multidimensional discrete-time systems is always finite. This fact can be interpreted
geometrically as that in Theorem 3.

By assuming that the value of q = ejωT is not a root of the numerator detW0(q), that is, the
plant zero because, otherwise, there will be an infinite number of vectors w∗ �= 0 from (2.27) such
that a = 0, we generate an analog of the quadratic form (2.19), the Hermitian form

zT−[W0
−1(e−jωT )]T [Im +Wp(e

−jωT )]T [Im +Wp(e
jωT )] W0

−1(ejωT )z+ = (w∗)Tw∗
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rearranged equivalently in

(x− jy)T Q(x+ jy) = 1, (2.31)

where z+ = x+ jy, z− = x− jy (x, y ∈ Rm are real vectors) and Q is a Hermitian matrix like

Q = [W0
−1(e−jωT )]T [Im +Wp(e

−jωT )]T [Im +Wp(e
jωT )] W0

−1(ejωT )/‖w∗‖2.
The left side of the Hermitian form (2.31) includes the complex vectors and matrix. Nevertheless,

this Hermitian form which assumes, as is well known, real values can be rearranged in the real
quadratic form of 2m variables [27]:

[

x
y

]T [

A −B
B A

] [

x
y

]

= [xT yT]M [xT yT]T = 1, (2.32)

where A and B are the real and imaginary parts of the matrix Q = A+ jB which in virtue of the
Hermitian character of Q are the real symmetric, AT = A, and skew-symmetric, BT = −B, matri-
ces. In particular, this implies that the matrix M of the given quadratic form is real symmetric and
its determinant detM = detQ detQ = |detQ|2 [27], where Q = A− jB. We notice that the norm
of the composite vector [xT yT]T is equal to the norm of the vector of oscillation amplitudes a.
Therefore, the volume V2m of hyperellipsoid (2.32) in the 2m-dimensional space characterizes indi-
rectly the “values” of the vector a. The fact that the discrete-time systems have bounded precision
over the entire set of the stabilizing state controllers (2.3) implies that in principle it is impossible
to obtain an ellipsoid (2.32) of a volume smaller than some limiting volume defined only by the
properties of the controlled plant and the norm of external perturbation. The following theorem
formulates these considerations in the mathematical terms.

Theorem 4. The minimal singular value of the matrix of recurrent difference V (q) = Im+Wp(q)
calculated at the frequency of external perturbation (for q = ejωT ), and the volume V2m of hyperel-
lipsoid (2.32) characterizing indirectly the “value” of the vector of amplitudes of the control errors
a ∈ Rm of the discrete-time multidimensional system (2.1), (2.3) under the action of harmonic
external perturbations (2.27) for all real frequencies ω ∈ [0, π/T ] obey the inequalities

σmin[Im +Wp(e
jωT )] <

[
2n

|d(ejωT )|
]1/m

, d(ejωT ) �= 0,

V2m >
πm

m!

|detW0(e
jωT )|2 |d(ejωT )|2
22n

‖w∗‖2m. (2.33)

Theorem 4 is proved in the Appendix.

3. OUTPUT CONTROLLERS

Since the systems with discrete-time controllers have bounded precision even in the case of
full measurement of the system state vector, it is understandable intuitively that this effect is
all the more possible under the output control. It follows from [1] that for the minimal-phase
plants where the measured variables coincide with the controlled ones and their number is equal
to the dimensionality of control there exists knowingly a continuous output control law providing
an arbitrarily high control precision (stabilization). Therefore, in what follows we confine our
consideration namely to this class of plants, which enables us to specify more clearly the distinctions
of the precision characteristics of the continuous and discrete-time control systems and compare
them. Additionally, for the sake of simplicity we confine ourselves to the case of scalar control action
and controlled variable because as the last section demonstrated in essence the multidimensional
case does not introduce any new facts but is more cumbersome. The multidimensional case can be
considered by analogy with Section 2.
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3.1. Formulation of the Problem

Let us consider a discrete model of the continuous plant given in the “input-output” form by
the equations

d(q)y(k) = b(q)u(k) + l(q)w(k), y ∈ R1, u ∈ R1, w ∈ R1, (3.1)

with the discrete-time output controller

g(q)u(k) = r(q)y(k), k = 0, 1, 2, . . . , (3.2)

where y is the controllable and concurrently measurable variable of the plant; u is the control
action; w is the external perturbation; and d(q), b(q), l(q), g(q), r(q) are certain polynomials of the
operator q. The higher degree of the polynomial d(q) exceeds by one the higher degrees of the
polynomials b(q) and l(q), and the higher degree of the polynomial r(q) does not exceed the higher
degree of the polynomial g(q) (the controller is physically realizable).

We assume that the plant is fully controllable and observable, that is, the polynomials d(q) and
b(q) have no common roots, and the controller determined by any existing method is such that for
w = 0 the closed-loop system (3.1), (3.2) is asymptotically stable.

We determine the following transfer functions:

w0(q) =
b(q)

d(q)
, wf (q) =

l(q)

d(q)
, wr(q) =

r(q)

g(q)
, wp(q) = −w0(q)wr(q), (3.3)

where w0 is the plant transfer function in the control action; wf is the plant transfer function in
the perturbing action; wr is the controller transfer function; and wp is the transfer function of the
open-loop system (3.1), (3.2) in the physical output (input) of the plant.

By considering together (3.1), (3.2), and (3.3), we establish the relation between the controlled
variable and the perturbing action

y(q) =
wf (q)

1 + wp(q)
w(q) =

g(q)l(q)

d(q)g(q) − r(q)b(q)
w(q), (3.4)

where the denominator includes the characteristic polynomial of the closed-loop system (3.1), (3.2)

D(q) = d(q)g(q) − r(q)b(q)

all of whose roots qi satisfy the conditions |qi| < 1 (A.3) in virtue of asymptotic stability. Without
loss of generality one can assume that the coefficient at the higher degree of q of this polynomial is
equal to one.

Since the plant transfer function in perturbation is independent of the controller parameters,
it follows from (3.4) that the properties of the closed-loop system and, in particular, its precision
characteristics are defined wholly by the frequency properties of the recurrent difference v(q) =
1 + wp(q) which is the denominator of the transfer function from w to y of the closed-loop system

Tyw(q) =
wf (q)

1 + wp(q)
=

g(q)l(q)

d(q)g(q) − r(q)b(q)
.

We consider the frequency properties of the recurrent difference v(q) in system (3.1), (3.2) with
the discrete-time output controller and estimate the maximum achievable values of the steady-
state control errors in the case where the plant is subjected to the standard bounded step-type and
harmonic external perturbations.
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3.2. Step-type Perturbations

We assume that the external perturbation is constant w(k) = const = w∗, where w∗ > 0 is
the perturbation amplitude. According to the theorem about the limiting values [24, 25], for the
steady-state value of the controlled variable (control error) we obtain from (3.4) that

lim
k→∞

y(k) = y(∞) =
wf (1)

1 +wp(1)
w∗ =

kf
1 + kp

w∗ =
g(1)l(1)

D(1)
w∗, (3.5)

where kf = wf (1) and kp = wp(1) are the perturbation transfer coefficients (gains) of the plant and
the open-loop discrete-time system, respectively. As can be seen from (3.5), the higher the transfer
coefficient of the open loop, the lower the steady-state control error. However, as it was in the
case of discrete-time state controllers, this transfer coefficient is in essence bounded from above,
which leads to the need for indicating the maximum achievable control error in the systems with
discrete-time output controller. This fact looks most natural in the minimal-phase case because,
otherwise, the precision of even continuous systems is bounded. That is why we assume in what
follows that the polynomial of the plant transfer function numerator in the control action b(q) has
roots within the unit circle |q| < 1.

We notice that the recurrent difference v(q) satisfies the following identity which is similar
to (A.1) and easily verifiable:

1 + wp(q) =
D(q)

dp(q)
, (3.6)

where dp(q) = d(q)g(q) is the characteristic polynomial of the open-loop system. Assuming that
q = 1 in (3.6) and taking into consideration that the inequality (A.4), which is proved in the
Appendix, is satisfied in virtue of stability of the polynomial D(q), we obtain the inequality

|1 + kp| < 2n

|dp(1)| , dp(1) = d(1)g(1) �= 0, (3.7)

where n is the degree of the polynomial D(q).

We note that since there is a finite number in the denominator of (3.7), the transfer coefficient of
the open-loop discrete-time system is always bounded from above. In turn, the maximum achievable
static condition of control satisfies the inequality following from (3.5):

|y(∞)| > |kf | |dp(1)|
2n

w∗ =
|g(1)| |l(1)|

2n
w∗, dp(1) = d(1)g(1) �= 0. (3.8)

If the plant and/or controller have the integrating units (dp(1) = d(1)g(1) = 0), then the above
inequalities can be modified by analogy with Remark 1.

We emphasize that the resulting inequalities and conclusions are valid independently of stability
and/or minimal phase of the plant. However, they have an essential distinction from the similar
inequalities of Theorem 1. The right side of these inequalities includes the characteristic polynomial
of the plant d(q) and the characteristic polynomial g(q) of the controller as calculated at the zero
frequency for q = 1. At the same time, if the plant is a minimal phase one, then many methods of
design of the discrete-time output controller [7, 20] and, in particular, the optimal control l1-theory
[21–23] provide controllers with g(q) = b(q), which means that the zeros of the plant lying within
the unit circle are compensated by the controller poles. In this case, the polynomial b(q) is the
multiplier of the characteristic polynomial of the closed-loop system D(q) = b(q)[d(q) − r(q)], and
the above inequalities obtained by cancelling the polynomial b(q) in (3.4) and (3.6)) are given by

|1 + kp| < 2ρ

|d(1)| , |y(∞)| > |l(1)|
2ρ

w∗, d(1) �= 0, (3.9)
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where ρ is the degree of the polynomial d(q) − r(q). These inequalities already do not include the
controller parameters and are defined only by the plant properties.

3.3. Harmonic Perturbations

We assume that the external perturbation is a harmonic function like w(k) = w∗ sin(ωkT ), where
w∗ > 0 is the perturbation amplitude; ω is the circular (generally speaking, unknown) frequency;
and T is the discreteness (quantization) period of controller (3.2). Then, according to the classical
theory of linear discrete-time systems [12, 17, 24, 25], the amplitude a > 0 of the output steady-state
oscillations of the controlled variable

lim
k→∞

y(k) = a sin(ωkT + φ), (3.10)

where φ is the phase shift relative to the input harmonic, can be established from

a = |Tyw(e
jωT )| w∗ =

|wf (e
jωT )|

|1 + wp(ejωT )| w
∗, (3.11)

where Tyw(q) is the transfer function of the closed-loop system (3.1), (3.2) from (3.4).

The denominator of (3.11) comprises the magnitude of the recurrent difference calculated at
the frequency of external perturbation. The greater the magnitude, the smaller the amplitude a
of the forced oscillations of the controlled variable y. In the discrete-time case, however, this value
is always bounded from above, and, consequently, there exists the maximum achievable amplitude
of oscillations of the controlled variable which in essence cannot be reduced with the use of the
output controller (3.2).

Theorem 5. Under the harmonic external perturbation w(k) = w∗ sin(ωkT ), for all real fre-
quencies ω ∈ [0, π/T ] the recurrent difference of system (3.1), (3.2) with the discrete-time output
controller and the maximum achievable control error amplitude satisfy the inequalities

|1 + wp(e
jωT )| < 2n

|dp(ejωT )| , dp(e
jωT ) �= 0, (3.12)

a >
|wf (e

jωT )| |dp(ejωT )|
2n

w∗. (3.13)

Theorem 5 is proved in the Appendix.

We note that the inequalities (3.7) and (3.8) follow from Theorem 5 under the zero frequency
of the external perturbation ω = 0 and emphasize that the inequalities of this theorem are valid
independently of the minimal phase property of the plant. At the same time, if the plant is a
minimal phase one, then as the result of cancellation by the polynomial b(q) in (3.4) and (3.6) for
g(q) = b(q) and D(q) = b(q)[d(q) − r(q)] these inequalities acquire the form

|1 +wp(e
jωT )| < 2ρ

|d(ejωT )| , a >
|l(ejωT )|

2ρ
w∗, d(ejωT ) �= 0, (3.14)

where ρ is the degree of the polynomial d(q) − r(q). The right sides of these inequalities do not
involve the controller parameters and are defined only by the properties of the plant polynomials.

4. CONCLUSIONS

It was demonstrated that, in contrast to the continuous case, in the systems with discrete-time
controllers there always exists a finite limit to the achievable precision of control. This is dues to
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the fact that the transfer coefficient in the state of open loop for the system with a single control,
as well as the singular values of the matrix of recurrent difference which in the multidimensional
case define the steady-state control errors are in essence bounded values by virtue of the specificity
of the modal stability domain of the discrete-time systems. It is obvious that this basic constraint
becomes more prominent with reduction of the system order and increase in the quantization
period of the discrete-time controller. These results make it clear why it is impossible to provide
an infinite stability margin in the gain in the procedures of LQ-optimization of the discrete-time
systems [4, 7, 8, 30, 31].

The standard bounded vector time functions such as the step-type and harmonic functions of
unknown frequency were considered as the external perturbations. The only requirement on the
controllers, besides their physical realizability, that was used at deriving the basic results was the
condition for asymptotic stability of the closed-loop system. Therefore, the conclusions of the
present paper apply to the entire set of the discrete-time stabilizing controllers, no matter what
methods were used to design them. The results obtained are as follows.

1. It was proved that in the systems with discrete-time controllers there always exists a finite
limit for the achievable control precision.

2. For the systems with single control actions, established were the achievable estimates of the
magnitude of the frequency transfer function of the open-loop system (gain under the step-
type perturbations) and the level of minimal possible control errors that are independent of
the parameters of the discrete-time controller and defined by the system order, value of the
quantization period, and the plant properties.

3. For the multidimensional systems, a similar achievable estimate of the singular values of the
frequency transfer matrix of the recurrent difference defining the limit control errors of systems
with more than one control actions was obtained.

These results are readily generalized to a wider class of polyharmonic perturbations with un-
known amplitudes and power-limited frequencies.

APPENDIX

Proof of Theorem 1. For m = m1 = 1 and w = 0, we represent the equations of the closed-loop
system as

[

qIn −A −B2

−K 1

] [

x(k)
u(k)

]

= 0.

Then, with regard for the well-known rule of expansion of the determinant of the block matrix
[32, 33], the characteristic polynomial D(q) of the closed-loop system (2.1), (2.3) is given by

D(q) = det

[

qIn −A −B2

−K 1

]

= det(qIn −A)[1 −K(qIn −A)−1B2],

where det(qIn−A) = d(q) is the characteristic polynomial of the open-loop system coinciding here
with characteristic polynomial of the plant. Whence follows the identity

1 + wp(q) =
D(q)

d(q)
. (A.1)

By expressing the characteristic polynomial of the closed-loop system

D(q) = (q − q1)(q − q2) . . . (q − qn)
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in terms of its roots qi (i = 1, n), with regard for (2.8) we establish from the last identity that for
q = 1

|1 + kp| = |(1− q1)(1 − q2) . . . (1− qn)|
|d(1)| . (A.2)

Since the closed-loop system (2.1), (2.3) is asymptotically stable

|qi| < 1, i = 1, n, (A.3)

the inequality |(1− qi)| < 2 is satisfied for each real root qi of the polynomial D(q). If the root
qi = Re qi + j Im qi of the polynomial D(q) is complex, then it appears in the numerator of (A.2)
together with its complex conjugate value qi. On this ground we establish

(1− qi)(1− qi) = (1− Re qi − j Im qi)(1 − Re qi + j Im qi)

= (1− Re qi)
2 + Im2qi = 1 + Re2qi + Im2qi − 2Re qi < 2− 2Re qi

= 2(1− Re qi) < 22.

The signs of inequality are put here in virtue of (A.3). On the basis of the aforesaid, the following
inequality is true for the numerator in the right side of (A.2):

|D(1)| = |(1− q1)(1 − q2) . . . (1− qn)| < 2n (A.4)

from which inequality (2.9) follows. The second inequality (2.10) follows from (2.7) with regard
for (2.9), which proves Theorem 1.

Proof of Theorem 2. Having first expressed the polynomial D(q) in terms of its roots

D(ejωT ) = (ejωT − q1)(e
jωT − q2) . . . (ejωT − qn),

we estimate the numerator in the right side of identity (A.1) for q = ejωT .

In virtue of condition (A.3), for asymptotic stability of the closed-loop system each of the
multipliers of the last expression satisfies the inequality

|ejωT − qi| < 2, i = 1, n.

One can readily make sure of this fact from the geometrical interpretation of the expression in
the left side of the last inequality which represents the length of the radius vector drawn from the
point qi belonging to the interior of the unit circle to the point ejωT lying on the unit circle centered
at the origin (see the figure).

Taking the last inequality into account, we get the estimate

|D(ejωT )| < 2n (A.5)

enabling us to establish from identity (A.1) the first of the proved inequalities. The second inequality
follows with regard for (2.16) from (2.15) for the amplitude of the steady-state oscillations of the
controlled variable, which proves Theorem 2.

Proof of Theorem 3. The characteristic polynomial D(q) of the closed-loop system (2.1), (2.3)
is representable as in [7]:

D(q) = det

[

qIn −A −B2

−K Im

]

= det(qIn −A) det[Im −K(qIn −A)−1B2].
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This expression was obtained using the rules for expansion of the determinant of the block matrix
from [34]. Hence we get the identity

det[Im +Wp(q)] =
D(q)

d(q)
, d(q) = det(qIn −A) (A.6)

represent its left side as [33]:

det[Im +Wp(q)] =
m∏

i=1

λi[Im +Wp(q)],

where λi[V ] is the ith eigenvalue of the matrix V , and make use of the equality from [33]:

m∏

i=1

|λi(M)| =
m∏

i=1

σi(M),

where σi(M) is the ith singular value of the matrix M .

Assuming that in identity (A.6) q = 1 and relying on the last equalities and previously proved
inequality (A.4) which is valid in virtue of the asymptotic stability of the closed-loop system (2.1),
(2.3), we put down the following string of equalities and inequalities

|det[Im +Wp(1)]| =
m∏

i=1

|λi[Im +Wp(1)]| =
m∏

i=1

σi[Im +Wp(1)];

|detV (1)| =
m∏

i=1

σi[Im +Wp(1)] =
|D(1)|
|d(1)| <

2n

|d(1)| ; (A.7)

(σmin[Im +Wp(1)])
m �

m∏

i=1

σi[Im +Wp(1)] <
2n

|d(1)|

from the last of which (2.22) follows.

Passing now to the proof of inequality (2.23), we represent the equation of hyperellipsoid (2.19)
in the equivalent form zT(∞)Mz(∞) = 1, where M is the symmetrical positive definite (m ×m)
matrix:

M = [W0
−1(1)]T [Im +Wp(1)]

T [Im +Wp(1)]W0
−1(1)/‖w∗‖2.

The volume of ellipsoid obeys the following formula [27]:

Vm =
πm/2

Γ(m/2 + 1)
(detM)−1/2, (A.8)

where the numerical coefficient including the gamma function is defined for the even and odd values
of m, respectively by

πp

p!
, m = 2p; 2

(2π)p

(2p + 1)!!
, m = 2p+ 1.

Taking into consideration the fact that the matrix M is a product of multipliers and the well-
known properties of the matrix determinants [27], we establish from (A.8) that

Vm =
πm/2

Γ(m/2 + 1)

|detW0(1)|
|detV (1)| ‖w∗‖m.

With regard for (A.7), the second of the considered inequalities follows from the last expression.
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Inequalities (2.22) and (A.7), obviously, make sense if d(1) �= 0. Otherwise, one can resort to
the method similar to that of Remark 1. This proves Theorem 3.

Proof of Theorem 4. Using the relation between the determinant of the matrix with the product
of eigen and singular values [27, 33] (see the proof of Theorem 3), we establish for q = ejωT an
analog of the first equality of (A.7):

|det[Im +Wp(e
jωT )]| =

m∏

i=1

|λi[Im +Wp(e
jωT )]| =

m∏

i=1

σi[Im +Wp(e
jωT )]. (A.9)

Taking this equality into account and assuming that q = ejωT in identity (A.6) and using
also the property of asymptotic stability of the closed-loop system (2.1), (2.3) in virtue of which
inequality (A.5) is valid, we obtain

|detV (ejωT )| =
m∏

i=1

σi[Im +Wp(e
jωT )] =

|D(ejωT )|
|d(ejωT )| <

2n

|d(ejωT )| (A.10)

from which we conclude that the inequality

(σmin[Im +Wp(e
jωT )])m �

m∏

i=1

σi[Im +Wp(e
jωT )] <

2n

|d(ejωT )| ,

takes place which gives rise to (2.33).

Passing to the proof of inequality (2.34), we notice that the volume of hyperellipsoid (2.32)
obeys (A.8) where 2mmust be substituted form. Then, with regard for the equalities Γ(m+1) = m!
and detM = |detQ|2 and the structure of the matrix Q, we obtain from (2.31)

V2m =
πm

m!

|detW0(e
jωT )|2

|detV (ejωT )|2 ‖w∗‖2m.

Taking into consideration inequality (A.10), we obtain from this expression the second of the
considered inequalities, which proves Theorem 4.

It follows from the above relations (A.9), (A.10) that there are bounded numbers in the denom-
inators of inequalities (2.30). Therefore, the lower boundary of the norm of the amplitude vector of
control errors in the multidimensional discrete-time systems with state controllers is always finite.

Proof of Theorem 5. In virtue of the previously proved inequality (A.5), the first inequality
of Theorem 5 follows from identity (3.6) because the polynomial D(q) is stable. With regard
for this inequality, the second inequality follows from (3.11) for the amplitude of the steady-state
oscillations of the controlled variable, which proves Theorem 5.
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