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Abstract—A test harmonic signal underlies the finite-frequency identification method. It not
easy to specify its frequencies, because they must be chosen in the range of eigenfrequencies
determined by the coefficients of the identified object. A method of determining the eigenfre-
quency bounds for the identified object is developed.

1. INTRODUCTION

In identification of linear stationary objects, there are two trends differing in assumptions con-
cerning disturbances and measurement noises.

In the first trend [1], disturbances and measurement noises are assumed to be random processes
with known distribution and statistical properties. In the second trend [2–4], they are unknown
bounded functions. Algorithms of this trend employ the output of the object, which contains
two indeterminate components: the first depends on the unknown coefficients of the object and
the second depends on these coefficients and unknown disturbance. As a result of the unknown
disturbance, identification accuracy is bounded and depends on disturbance.

The finite-frequency identification method [5, 6] is based on a test signal, which aids in discerning
these components and obtaining the necessary identification accuracy if the disturbance satisfies
experimentally verifiable ff-filtrability conditions [6].

The traditional frequency approach is also based on test signals. But here the error in the
measurement of frequency characteristics is assumed to be absent [7] or random numbers [8] uncor-
related at certain test frequencies. Therefore, it is difficult to determine the class of disturbances
and measurement noises for which this approach yields the desired identification accuracy.

The traditional frequency approach requires the use of many test frequencies. The number of
test frequencies required in the finite-frequency method is minimal and equal to the dimension of
the state space of the object; therefore, there is a need for choosing test frequencies. Intuitively, it
is obvious that they must be chosen in the range of frequencies at which the logarithmic amplitude-
frequency characteristic of the object has kinks. These kinks depend on the unknown coefficients
of the object. Therefore, there is a need for determining the bounds of this range. In this paper,
we study the determination of these bounds.

2. THE FINITE-FREQUENCY IDENTIFICATION METHOD. STABLE OBJECTS

Let us consider a completely controllable and asymptotically stable object described by the
equation

dny
(n) + · · · + d1ẏ + y = kγu

(γ) + · · · + k1u̇+ k0u+ f, t ≥ t0, (1)

1 This paper is an enlarged variant of the report [12] read at the 3rd Asian Control Conference at Shanghai, China.
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where y(t) is the measured output, u(t) is the controlled input, y(i) and u(j)
(
i = 1, n, j = 1, γ

)
are

the derivatives of these functions, and f(t) is an unknown bounded disturbance. The coefficients
di and kj

(
i = 1, n, j = 0, γ

)
are unknown, but n and γ, γ < n, are known.

Identification consists in finding the estimates d̂i and k̂j (i = 1, n, j = 0, γ) of coefficients such
that the identification errors ∆di = di − d̂i and ∆ki = ki − k̂i satisfy the conditions

|∆di| ≤ εdi , |∆kj | ≤ εkj
(
i = 1, n, j = 0, γ

)
, (2)

where εdi and εkj
(
i = 1, n, j = 0, γ

)
are given numbers.

We now describe the finite-frequency method of identification [5, 6] for solving this problem.
The 2n numbers

αk = Rew(jωk), βk = Imw(jωk)
(
k = 1, n

)
, (3)

where

w(s) =
kγs

γ + · · · + k1s+ k0

dnsn + · · ·+ d1s+ 1
, (4)

are called the frequency parameters [9]. Their estimates are experimentally determined as follows:
object (1) is excited by a test signal

u =
n∑
k=1

ρk sinωk(t− t0), t ≥ t0, (5)

of given positive amplitudes ρk
(
k = 1, n

)
and test frequencies ωk

(
k = 1, n

)
. The test frequencies

are multiples of the base frequency ωb : ωi = niωb, where ni
(
i = 1, n

)
are integers. The output of

the object excited by the test signal (5) is applied to a Fourier filter

α̂k = αk(τ) =
2
ρkτ

t0+τ∫
t0

y(t) sinωk(t− t0)dt, (6)

β̂k = βk(τ) =
2
ρkτ

t0+τ∫
t0

y(t) cosωk(t− t0)dt
(
k = 1, n

)
,

where τ is the filtering time, which is a multiple of the base period Tb =
2π
ωb

.

To formulate conditions for the convergence of the estimates αk(τ) and βk(τ)
(
k = 1, n

)
to their

true values, let us introduce the filtrability functions

`αk (τ) =
2
ρkτ

t0+τ∫
t0

ȳ(t) sinωk(t− t0) dt, (7)

`βk(τ) =
2
ρkτ

t0+τ∫
t0

ȳ(t) cos ωk(t− t0) dt
(
k = 1, n

)
,

where ȳ(t) is the output of the object when there is no test signal (5) (u(t) = 0).

Assertion 1 ([5]). If the disturbance f(t) is such that the conditions

|`αk (τ)| ≤ εαk ,
∣∣∣`βk(τ)

∣∣∣ ≤ εβk (
k = 1, n

)
, τ ≥ τ∗, (8)
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are satisfied beginning from a certain instant τ = τ∗, where εαk and εβk
(
k = 1, n

)
are given numbers,

then there exists a filtering instant τ = τ̄∗ ≥ τ∗ such that the filtering errors ∆αk(τ) = α̂k − αk
and ∆βk(τ) = β̂k − βk satisfy the inequalities

|∆αk(τ)| ≤ εαk , |∆βk(τ)| ≤ εβk
(
k = 1, n

)
, τ ≥ τ̄∗. (9)

A disturbance satisfying conditions (8) is said to be ff-filtrable [5].
A disturbance is said to be strictly ff-filtrable if lim

τ→∞
`αk (τ) = lim

τ→∞
`βk(τ) = 0

(
k = 1, n

)
. In this

case, the filtering errors have the property

lim
τ→∞

∆αk(τ) = lim
τ→∞

∆βk(τ) = 0. (10)

Using frequency parameter estimates, we can estimate the coefficients of the object. Indeed, the

identity w(s) =
k(s)
d(s)

and expressions (3) yield the system of linear algebraic equations

k̂(sk)− (αk + jβk) ˆ̄d(sk) = αk + jβk
(
k = 1, n

)
, (11)

where ˆ̄d(s) = d̂(s)− 1 = d̂ns
n + · · ·+ d̂1s, k̂(s) = k̂γs

γ + · · ·+ k̂0, sk = jωk
(
k = 1, n

)
.

Assertion 2 ([9]). If object (1) is completely controllable, then system (11) has a unique solution
d̂i = di, k̂j = kj

(
i = 1, n, j = 0, γ

)
, which does not depend on the test frequencies ωi [ωi 6= ωj

(i 6= j), ωi 6= 0
(
i = 1, n

)
].

In Eqs. (11), replacing the frequency parameters αk and βk
(
k = 1, n

)
by their estimates, we

obtain the frequency identification equations

k̂(sk)− (α̂k + jβ̂k) ˆ̄d(sk) = α̂k + jβ̂k
(
k = 1, n

)
. (12)

The identification time (filtering duration) τ = qTb (q = 1, 2, . . .) is determined from the following
necessary conditions for the convergence of identification:

|di(qTb)− di[(q − 1)Tb]| ≤ εdi |di(qTb)|
(
i = 1, n

)
|kj(qTb)− kj [(q − 1)Tb]| ≤ εkj |kj(qTb)|

(
j = 0, γ

) (q = 1, 2, . . .). (13)

Algorithm 1 (of finite-frequency identification) [5] consists of the following steps:
(a) apply the output of object (1) excited by the test signal (5) to the input of the Fourier

filter (6),
(b) measure the outputs of the Fourier filter at instants qTb (q = 1, 2, . . .),
(c) for every τ = qTb (q = 1, 2 . . . ), solve the frequency Eqs. (12), where α̂k = αk(qTb)

and β̂k = βk(qTb)
(
k = 1, n

)
, and find the estimates di(qTb) and kj(qTb)

(
i = 1, n, j = 0, γ

)
of the

coefficients of the object, and
(d) verify the necessary conditions (13) for every q until they are satisfied for some q = q1.
Whether the estimates di(q1Tb) and kj(q1Tb)

(
i = 1, n, j = 0, γ

)
satisfy conditions (2) is verified

by model validation frequency methods [5].
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3. FORMULATION OF THE PROBLEM

In the identification algorithm described above, the amplitudes and frequencies of the test sig-
nal (5) are assumed to be given. In reality, they are unknown and are determined in the first
identification stage—the experiment design stage [1].

If the test frequencies are known, then the amplitudes of the test signal are determined from
the “small disturbance” condition [6], which implies that the test action must not strongly change
the natural output ȳ(t) of the object. This condition is of the form

|y(t)− ȳ(t)| ≤ εy, t ≥ t0, (14)

where εy is a given number.
It is not a simple matter to find the test frequencies. Intuitively, it is obvious that they must be

chosen in the frequency range in which the logarithmic amplitude-frequency (LAF) characteristic
of the object has kinks. Such a conclusion is not consistent with Assertion 2, which asserts that
the solution of Eq. (11) does not depend on test frequencies. This is an apparent contradiction,
because the frequency identification Eqs. (12) derived from system (11) are based on the use of
estimates of frequency parameters, instead of their true values. Moreover, we can prove that for
test frequencies chosen outside the range of kinks of the LAF curve, the identification accuracy
condition (2) may be violated for arbitrarily small filtering errors.

Using a more exact description of the choice of test frequencies, let us represent the transfer
function of object (1), assuming that k0 6= 0, as

w(s) = k

p3∏
i=1

(Ťis+ 1)
p4∏
i=1

( ˇ̃
iT
2s2 + 2 ˇ̃

iT
ˇ̃
iξs+ 1)

p1∏
i=1

(T̄is+ 1)
p2∏
i=1

( ¯̃
iT2s2 + 2 ¯̃

iT
ˇ̃
iξs+ 1)

, ˇ̃
iξ < 1(i = 1, p4), ˇ̃

iξ < 1(1 = 1, p2). (15)

Let the time constants of these functions be arranged in decreasing order

T̄1 > T̄2 > · · · > T̄p1,
¯̃

1T > ¯̃
2T > · · · > ¯̃Tp2 , (16)

|Ť1| > |Ť2| > · · · > |Ťp3 |, | ˇ̃T1| > | ˇ̃T2| > · · · > | ˇ̃Tp4 |.

Definition 1. Eigenfrequencies of the object are defined to be the numbers

ω̄i =
1
T̄i

(
i = 1, p1

)
, ¯̃ωi =

1
¯̃
iT

(
i = 1, p2

)
, ω̌i =

1
|Ťi|

(
i = 1, p3

)
, ˇ̃ωi =

1

| ˇ̃
iT |
(
i = 1, p4

)
. (17)

The eigenfrequencies are the frequencies at which kinks occur in the LAF curve.

The frequencies ω` = min
{
ω̄1, ¯̃ω1, ω̌1, ˇ̃ω1

}
and ωu = max

{
ω̄p1, ¯̃ωp2, ω̌p3, ˇ̃ωp4

}
are called the

lower and upper bounds of eigenfrequencies and the interval [ω`, ωu], the eigenfrequency range.
By definition, these bounds depend on the greatest and least time constants of the transfer

function (15). Therefore, the following cases are possible: ω` = T̄−1
1 , ω` = ¯̃T−1

1 , ω` = |Ť−1
1 |,

ω` = | ˇ̃T−1
1 |, ωu = T̄−1

p1
, ωu = ¯̃T−1

p2
, ωu = |Ť−1

p3
|, and ωu = | ˇ̃T−1

p4
|.

For the sake of simplicity of presentation, we only consider the most frequently encountered
case, in which the eigenfrequency bounds depend on the time constants of inertial components:

ω` = T̄−1
1 , ωu = T̄−1

p1
. (18)

Let the time constants of the object satisfy the following constraints

T̄1 ≥ |∆T |δ−1
` , 0 < δ` < 0.5, T̄−1

p1
≥ |∆ω|δ−1

u , 0 < δu < 0.5, (19)
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where

∆T =
p1∑
i=2

T̄i +
p2∑
i=1

2 ¯̃
iT
¯̃
iζ −

p3∑
i=1

Ťi −
p4∑
i=1

2 ˇ̃
iT
ˇ̃
iζ, (20)

∆ω =
p1−1∑
i=1

(
T̄i
)−1 +

p2∑
i=1

2 ¯̃
iζ
( ¯̃

iT
)−1
−

p3∑
i=1

(
Ťi
)−1
−

p4∑
i=1

2 ˇ̃
iζ
( ˇ̃

iT
)−1

. (21)

The bounds δ−1
` and δ−1

u serve as a measure of remoteness of the time constants T̄1 and T̄p1 from
other time constants of the object.

According to expressions (18), to determine the eigenfrequency bounds, we must identify the
time constants T̄1 and T̄p1 . Obviously, the identification of these bounds is influenced by other time
constants in ∆T and ∆ω. Therefore, let us introduce lower and upper pseudo-frequencies

ωn` =
1
T`
, ωnu = T̄−1

p1
+ ∆ω, (22)

where

T` = T̄1 + ∆T. (23)

It is a simple matter to verify that the lower and upper bounds of eigenfrequencies under
condition (19) satisfy the inequalities

ωn` (1− δ`) ≤ ω` ≤ ωn` (1 + δ`), ωnu (1− δu)−1 ≥ ωu ≥ ωnu (1 + δu)−1. (24)

These inequalities imply that the pseudo-frequencies are close to the unknown bounds even in
the most unfavorable case δ` = δu = 0.5. Therefore, the determination of these bounds under
conditions (19) is reduced to determining the pseudo-frequencies.

Problem 1. Find the estimates ω̂n` and ω̂nu of the lower and upper pseudo-frequencies such that
the errors ∆ωn` = ωn` − ω̂n` , ∆ωnu = ωnu − ω̂nu satisfy the conditions

|∆ωn` | ≤ εn` , |∆ωnu | ≤ εnu , (25)

where εn` and εnu are given numbers.

4. THE LOWER BOUND OF TEST FREQUENCIES

The lower bound is determined as follows: the transfer function of object (1) is expressed as

w(s) =
1

T̄1s+ 1
wun(s), where wun(s) is a transfer function that contains other time constants and

the coefficient k. If object (1) is excited by a test signal (5) with n = 1 and small frequency ω1

(ω1 < ω`), then the output is almost exactly described by the equation

ˆ̄
1T ẏ + y = kmu+ f. (26)

The frequency Eq. (12) for the identification of model (26) is of the form

km −
(
α̂1 + jβ̂1

)
ˆ̄

1Tjω1 = α̂1 + jβ̂1. (27)

This equation can be written as a system km + ω1β̂1
ˆ̄

1T = α̂1, −ω1α̂1
ˆ̄

1T = β̂1, and the second
equation of this system defines the function

T̄1(ω1, τ) = − β1(τ)
ω1α1(τ)

. (28)
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The estimate ωn` is determined through the following operations.
Experiment 1. Object (1) is excited by a test signal

u(t) = ρ1 sinω1(t− t0), (29)

where ω1 = ω
[1]
1 is a sufficiently small number. The output of the object is applied to the input of

the Fourier filter (6) for n = 1 and then function (28) is computed.

Assertion 3. Function (28) has the structure

T̄1(ω1, τ) = T` + ε`(ω1, τ), (30)

where the function ε`(ω1, τ) is such that, if the disturbance f(t) is strictly ff-filtrable, then, for any
given arbitrarily small ε∗` , there exist a small frequency ω1 and a large filtering time τ∗ for which

|ε`(ω1, τ)| ≤ ε∗` , τ ≥ τ∗. (31)

If f(t) is simply ff-filtrable, then the number ε∗` depends on the numbers εαk and εβk
(
k = 1, n

)
.

The proof of this assertion is given in the Appendix.
According to this assertion, the unknown estimate of the lower pseudo-frequency is

ω̂n` = T̄ −1
1 (ω1, τ

∗), (32)

and it satisfies the first condition in (25).

To verify whether ω1 is small, experiment 1 is repeated with ω1 = ω
[2]
1 = ω

[1]
1 /2 and then the

number T̄1(ω[2]
1 , τ∗) is computed. If∣∣∣T̄1

(
ω

[1]
1 , τ∗

)
− T̄1

(
ω

[2]
1 , τ∗

)∣∣∣ ≤ δT ∣∣∣T̄1

(
ω

[2]
1 , τ∗

)∣∣∣ , (33)

where δT is a sufficiently small given number, then ω̂n` =
[
T̄1

(
ω

[2]
1 , τ∗

)]−1
. If conditions (33) are

not satisfied, then the experiment is repeated with ω1 = ω
[3]
1 = ω

[2]
1 /2, etc. These experiments must

be accompanied with a verification of the ff-filtrability conditions (8) for n = 1, and the amplitude
ρ1 is determined from the “small disturbance” condition (14).

5. THE UPPER BOUND OF TEST FREQUENCIES

If object (1) is excited by signal (29) with a sufficiently high frequency ω1 (ω1 > ωu), then its
output is almost exactly described by the equation

ˆ̄Tp1y
(n−γ) + y(n−γ−1) = kmu+ f. (34)

The frequency Eqs. (12) for identifying model (34) are of the form

km −
(
α̂1 + jβ̂1

)
(jω1)n−γ ˆ̄Tp1 =

(
α̂1 + jβ̂1

)
(jω1)n−γ−1. (35)

Hence we obtain the formulas

T̄p1(ω1, τ) =
α1(τ)
ω1β1(τ)

for even (n− γ), (36)

T̄ a
p1

(ω1, τ) = − β1(τ)
ω1α1(τ)

for odd (n− γ). (37)

Experiment 2. Exciting object (1) by a test signal (29), where ω1 = ω
[1]
1 is a sufficiently large

number, apply the output to the Fourier filter (6) for n = 1 and compute function (36) or (37).
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Assertion 4. The functions T̄p1(ω1, τ) and T̄ a
p1

(ω1, τ) have the structure

T̄p1(ω1, τ) = (ωnu )−1 + εu(ω1, τ), T̄ a
p1

(ω1, τ) = (ωnu )−1 + ε̄u(ω1, τ), (38)

where the functions εu(ω1, τ) and ε̄u(ω1, τ) are such that if the disturbance f(t) is strictly ff-filtrable,
then for any given arbitrarily small ε∗u there exist a sufficiently large frequency ω1 and a filtering
time τ∗ for which

|εu(ω1, τ)| ≤ ε∗u, |ε̄u(ω1, τ)| ≤ ε∗u, τ ≥ τ∗. (39)

If f(t) is simply ff-filtrable, then the number ε∗u depends on the numbers εαk and εβk (k = 1, n).

The proof of Assertion 4 is given in the Appendix.
From Assertion 4 we obtain the estimate for the upper bound of the pseudo-frequency:

ω̂nu =
[
T̄p1(ω1, τ

∗)
]−1 or ω̂nu =

[
T̄ ap1

(ω1, τ
∗)
]−1

. (40)

To verify whether the frequency ω1 is sufficiently high, experiment 2 is repeated with ω1 =
ω

[2]
1 = 2ω[1]

1 , and then numbers (36) or (37) are compared with the numbers obtained for ω1 = ω
[2]
1 .

Conditions (8) and (14) are also to be verified in these experiments.

6. UNSTABLE OBJECTS AND MEASUREMENT NOISES

Let us consider an unstable object (1). The positive number s∗ = max{Re s1,Re s2, . . . ,Re sn},
where si

(
i = 1, n

)
are the roots of the polynomial d(s), is called the degree of unstability of the

object. Let its upper estimate C0 be known. It can be determined experimentally.
Let us introduce a positive number λ ≥ C0 (C0 > s∗ > 0) and design a device, called the

(−λ)-block, which multiplies the output y(t) of the object by the function e−λ(t−t0). Its output is

ỹ(t) = y(t)e−λ(t−t0). (41)

Obviously, an object with (−λ)-block is asymptotically stable. But, if it is excited with the
test signal (5), its response ỹ(t), like the response to the initial conditions, decays lim

t→∞
ỹ(t) = 0.

Therefore, let us integrate the object with a (+λ)-block, which multiplies the input signal of (5)
by the function eλ(t−t0) and, consequently, this signal can be used as the input for object (1) [10]

ũ = u(t)eλ(t−t0). (42)

Thus, we obtain a system consisting of object (1), a (−λ)-block, and a (+λ)-block, whose input,
as before, is u(t) and the output is ỹ(t).

Let us determine its transfer function w̃(s) = ỹ(s)/u(s). For this, divide Eq. (1) by dn and
express it in Cauchy form as

ẋ = Ax + bũ+ mf, y = cTx, (43)

where the n× n matrix A and the n-dimensional column vectors b, m, and c (T is the transpose)
are constructed from the coefficients di and kj

(
i = 1, n, j = 0, γ

)
.

Let us introduce a vector x̃ = xe−λ(t−t0). Using notation (41) and (42) and the expression
ẋ = ˙̃xeλ(t−t0) + x̃λeλ(t−t0), we obtain the equations

˙̃x = (A− λE)x̃ + bu+ me−λ(t−t0)f, ỹ = cTx̃, (44)

where E is a unit matrix.
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Its corresponding transfer function is

w̃(s) =
ỹ(s)
u(s)

= cT [E(s+ λ)−A]−1 b = w(s+ λ)

=
k(s+ λ)
d(s + λ)

=
k̃(s)
d̃(s)

=
k̃γs

γ + · · ·+ k̃1s+ k̃0

sn + d̃n−1sn−1 + · · ·+ d̃1s+ d̃0

. (45)

The roots s̃i
(
i = 1, n

)
of the polynomial d̃(s) are left zeros. Indeed, since d(si) = 0

(
i = 1, n

)
, we

find that the roots of the polynomial d̃(s) = d(s+ λ) are s̃i = −λ+ si
(
i = 1, n

)
. By the definition

of the number λ, we have Re s̃i < 0.
Thus, the system is an asymptotically stable “object” described by Eq. (44) and having the

transfer function (45).
This “object” can be identified (if the test frequencies are given) with algorithm 1 if object (1)

in operation (a) is replaced by object (44) and the function y(t) in the Fourier filter (6) is replaced
by ỹ(t). Moreover, as shown in [10], filtering errors have property (10). This means that the
disturbance f̃(t) = e−λ(t−t0)f(t) is strictly ff-filtrable. Operation (c) yields the estimates d̃i(qTb)
and k̃j(qTb)

(
i = 1, n, j = 0, γ

)
. Using these estimates, we can uniquely compute the unknown

coefficients di(qTb) and kj(qTb)
(
i = 1, n, j = 0, γ

)
from formulas derived from the equalities d̃(s) =

d(s + λ) and k̃(s) = k(s+ λ).
Passing to Problem 1 for unstable objects, we can formally refine Definition 1 of the eigenfre-

quencies of an object, replacing the time constants T̃i and ¯̃
jT
(
i = 1, p1, j = 1, p2

)
in (17) by their

moduli. But, since the coefficients of the transfer function (45) are identified (through the solution
of frequency Eqs. (12)), Definition 1 must pertain to this transfer function.

The estimates of the lower and upper bounds of the eigenfrequencies of “object” (44) are de-
termined from formulas (32) and (40) with the use of the results of experiments 1 and 2, in which
object (1) is replaced by “object” (44) and the Fourier filter (6) y(t) is replaced by ỹ(t).

Remark 1. Sometimes it is difficult to solve problem 1 for unstable objects due to the constraints

|ũ(t)| ≤ ũ∗, |y(t)| ≤ y∗, (46)

where ũ∗ and y∗ are given numbers characterizing the admissible inputs and outputs of object (1).
Inequalities (46) restrict the duration of experiments 1 and 2, and the time τ∗ in expressions (32)
and (40) may not be attainable.

We now consider the case in which the output of object (1) is measured with noise. In this case,
Eqs. (1) are supplemented with the expression

y̌ = y + η,

where y̌(t) is the measured output and η(t) is the measurement noise, which, like the disturbance
f(t), is an unknown bounded function (|η(t)| ≤ η∗, where η∗ is a number).

It is easy to show that algorithm 1 and the solution of problem 1 remain unchanged even if y(t)
and ȳ(t) in integrals (6) and (7) are replaced by y̌(t) and ȳ(t) + η(t), respectively.

7. AN EXAMPLE

Let us consider a completely controllable asymptotically stable object described by the equation

d3
...
y + d2ÿ + d1ẏ + y = k1u̇+ k0u+ f (47)

with unknown coefficients and unknown bounded disturbance.
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The problem here is to estimate the eigenfrequencies.
Remark 2. The tested object (47) is described by the equation

0.2
...
y + 1.24 ÿ + 5.24 ẏ + y = −0.4 u̇+ u+ f, (48)

where the disturbance is described by

f(t) = a sgn
[
sinωf t

]
, (49)

a = 5, and ωf is a random number in the interval [3, 5], which changes in every period by
2π
ωf

.

The transfer function of object (48) is

w(s) =
25(−0.4s + 1)

(5s + 1)(s2 + 6s+ 25)
, (50)

which is drawn from a well-known example [11].
From (50) it follows that ω` = 0.2, ωu = 5.
The following experiments were carried out with ADAPLAB.
Experiment 1. Object (47) was excited by the test signal u(t) = 0.03 sinω1t.

For ω1 = ω
[1]
1 = 0.05 and τ [1] = 3750, we obtained T̄`(ω

[1]
1 , τ [1]) = 5.27. For ω1 = ω

[2]
1 = 0.0135

and τ [2] = 4800, we obtained T̄`(ω
[2]
1 , τ [2]) = 4.8 and, consequently, the estimate of the lower bound

is ω̂n` = 0.208.
Experiment 2. Object (47) was excited by the signal

u(t) = 1 sinω1t.

For ω1 = ω
[1]
1 = 20 and τ [1] = 6.28, we obtained T̄u(ω[1]

1 , τ [1]) = 0.095. For ω1 = ω
[2]
1 = 74 and

τ [2] = 3.14, we obtained T̄u(ω[2]
1 , τ [2]) = 0.106 and, consequently, ω̂nu = 9.4.

8. CONCLUSIONS

A method for experimentally determining the bounds of eigenfrequencies of an object with
unknown coefficients is elaborated. These bounds are assumed to be determined by the least and
largest time constants in the denominator in its transfer function. These time constants strongly
differ from other time constants (condition (19)).

Knowledge of the eigenfrequency bounds is helpful in widening the field of application of the
identification algorithm 1. Therefore, our method, along with algorithm 1 and verification of
the “small disturbance” condition (14), is an effective practical tool for identifying objects under
unknown bounded disturbance.

APPENDIX

Proof of Assertion 3. Using the transfer function (15), we find that frequency parameters (3)
are given by the expression

αk =

r2∑
q=0

`2qω
2q
k

n∑
q=0

m2qω
2q
k

, βk =

r1∑
q=0

`2q+1ω
2q+1
k

n∑
q=0

m2qω
2q
k

(
k = 1, n

)
, (A.1)
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where `0 = k0, `1 = k1 − k0d1, `2 = −k2d0 + k1d1 − k0d2, . . . . The coefficients k0, k1, d0, . . . are
related to time constants by the expression

k1 =

( p3∑
i=1

Ť1 +
p4∑
i=1

2 ˇ̃
iT
ˇ̃
iξ

)
k, d1 =

p1∑
i=1

T̄i +
p2∑
i=1

2 ¯̃
iT
¯̃
iξ, k0 = k. (A.2)

Let

α1 = α`1 + ε`α(ω1), β1 = β`1 + ε`β(ω1), (A.3)

where

α`1 = `0, β`1 = `1ω1. (A.4)

Using (A.1), since m0 = 1, the functions ε`α(ω1) and ε`β(ω1) can be expressed as

ε`β(ω1) = ω3
1 ε̄

`
β(ω1), ε`α(ω1) = ω2

1 ε̄
`
α(ω1), (A.5)

where the functions ε̄ `α(ω1) and ε̄ `β(ω1) are bounded for ω1 < ω`.

Using the notation δα(τ) = (α̂1 − α1)/α1 and δβ(τ) = (β̂1 − β1)/β1, we can represent the
estimates of frequency parameters as

α̂1 = α1[1 + δα(τ)] =
[
α`1 + ε`α(ω1)

]
[1 + δα(τ)] , (A.6)

β̂1 = β1[1 + δβ(τ)] =
[
β`1 + ε`β(ω1)

]
[1 + δβ(τ)] .

Substituting these expressions into formula (28), we obtain a relation of the type (30)

T̄1(ω1, τ) = − β`1
ω1α`1

+ ε`(ω1, τ), (A.7)

in which

ε`(ω1, τ) = −
β`1δβ(τ) + ε`β(ω1)[1 + δβ(τ)]

ω1[α`1 + ε`α(ω1)][1 + δα(τ)]
+
β`1
α`1

{α`1δα(τ) + ε`α(ω1)[1 + δα(τ)]}
ω1[α`1 + ε`α(ω1)][1 + δα(τ)]

. (A.8)

Using (A.4), let us express the first term of the sum in (A.7) as

T` = −`1
`0

= −k1 − k0d1

k0
= d1 −

k1

k0
. (A.9)

Hence, by virtue of (A.2), we obtain formula (23).
Using (9), (10), and (A.5), we can derive inequality (31) from (A.8).
Proof of Assertion 4.

Let us express the frequency parameters as

α̂1 = α1[1 + δα(τ)] = [αu
1 + εu

α(ω1)] [1 + δα(τ)], (A.10)

β̂1 = β1[1 + δβ(τ)] =
[
βu

1 + εu
β(ω1)

]
[1 + δβ(τ)],

where αu
1 =

`2r2ω
2r2
1

m(ω1)
, εu

α(ω1) =

r2−1∑
q=0

`2qω
2q
1

m(ω1)
, βu

1 =
`2r1+1ω

2r1+1
1

m(ω1)
, εu

β(ω1) =

r1−1∑
q=0

`2q+1ω
2q+1
1

m(ω1)
, and

m(ω1) =
n∑
q=0

m2qω
2q
1 , r2 = r1 + 1. (A.11)
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Substituting (A.10) and (A.11) into formula (36), we obtain the first structure in (38), where

(ωnu )−1 =
αu

1

ω1βu
1

=
`2r2
`2r1+1

=
kγdn

−kγ−1dn + kγdn−1
.

Using the relation of the coefficients dn, dn−1, kγ , and kγ−1 with time constants, we obtain (22).
Inequality (39) is demonstrated along the same lines as (31), because the approximation error is
such that εu

α = ω−2
1 ε̄u

α (ω1) and εu
β = ω−2

1 ε̄u
β (ω1), where the functions ε̄u

α(ω1) and ε̄u
β (ω1) are bounded

for ω1 > ωu.
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