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1. INTRODUCTION

The automatic control systems are characterized by indices of which precision, speed, overshoot,
and stability margins in phase and absolute value are the basic ones. The Bode plot method [1, 2]
for the one-dimensional plants, that is, those with one measurable and one control variable, was
the first method of design using these system indices.

Further extension of this method to the multidimensional plants proved to be onerous. The
methods of LQ and H∞ optimization [3–6] do not need the numbers of measured and control
variables. Therefore, consideration was given to the indices of the optimal systems. In particular,
their stability margins were established [7, 8], and the relation between the control precision and
the structure and parameters of the optimization functionals was determined. On this basis, the
methods of designing controllers of the multidimensional plants for the given precision and desired
stability margins were developed [9].

Speed is an important index of the control systems. A method to design controllers in precision
and speed for the minimum phase one-dimensional plants was suggested in [10]. It is based on
solving the Bézout identity whose right side is the stable part of the polynomial for the extremals
of a special functional providing system stability margins, precision, and speed.

The present paper proposes a method to generate the right side of the Bézout identity doing
without determination of the roots of the aforementioned polynomial, which is especially important
in the multidimensional case representing the subject matter of the second part of the present paper
where the controller design from the requirements on precision, speed, and stability margins relies
on the matrix Bézout identity. In distinction to [11, 10] where a similar problem is reduced to
solving a nonlinear algebraic Riccati equation or to the problem of H∞-optimization solved on
the basis of the linear matrix inequalities, this identity is solved by attacking a system of linear
algebraic equations.

The book of B.T. Polyak, M.V. Khlebnikov, and P.S. Shcherbakov [12] which determined a
controller providing the given boundary of the quadratic form of the controlled variables is devoted
to the methods of suppressing the exogenous disturbances. The coefficients of this quadratic form
are the best in a sense. The method allows for the constraints on control and the impact of the
initial conditions.
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2. FORMULATION OF THE PROBLEM

2.1. Precision and Speed Indices

Let us consider an asymptotically stable control system obeying the equations

dny
(n) + dn−1y

(n−1) + . . . + d1ẏ + d0y

= kmu
(m) + . . . + k1u̇+ k0u+ cpf

(p) + . . . + c1ḟ + c0f, m < n, p < n, t0 � t � t1,
(1)

gncu
(nc) + . . .+ g1u̇+ g0u = rmcy

(mc) + . . . + r1ẏ + r0y, nc � mc, (2)

where y(t) is the measured output of plant (1) which is the controlled variable, u(t) is the control
generated by the controller (2), f(t) is an unknown exogenous disturbance bounded by a certain
number f∗. This system has zero initial conditions:

y(t0) = ẏ(t0) = . . . = y(n−1)(t0) = 0, u(t0) = u̇(t0) = . . . = u(nc−1)(t0) = 0,

t0 and t1 are the given numbers.

To specify the form of the exogenous disturbance , we decompose the interval of system operation
into N subintervals of duration h = t1−t0

N each and, using the fact of existence of the numbers
f(kh) = f(k), k = 1, N , expand f(k) in the Fourier series

f(k) =
N∑

i=1

fi sin(ωik + ϕf,i), k = 1, N,

where fi, i = 1, N are the coefficients of the Fourier series, ωi =
2π
N i, i = 1, N . We assume now

that the exogenous disturbance is a polyharmonic function

f(t) =
N∑

i=1

fi sin(ωit+ ϕf,i) (3)

with unknown frequencies ωi and phases ϕf,i, i = 1, N , its unknown amplitudes satisfying the
condition

N∑

i=1

|fi| � f∗. (4)

The system output
y(t) = yb(t) + ytr(t)

consists of the working (basic) process yb(t) and the transient process ytr(t) directed toward the
working one.

The working process is given by

yb(t) =
N∑

i=0

a(ωi) sin(ωit+ ϕi), (5)

where a(ωi) and ϕi, i = 1, N , are, respectively, the amplitudes and phases of the system output.

If the exogenous disturbance (3) consists of one or more actually existing harmonics, then (5) is
called the stationary process. In the case at hand, such harmonics may miss (for example, f(t) is
a linear function or exponent), and the frequencies ωi, i = 1, N , are the result of expansion into
the Fourier series of the almost exogenous disturbance. These frequencies depend on the choice of
lengths of the intervals [t0, t1] and h. Therefore, we use the notion of the working process.
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CONTROLLER DESIGN IN PRECISION AND SPEED. I. 751

We introduce the notions of indices of system (1), (2) which generalize the well known indices
for the standard reference signals [1, 2].

Control precision is the least positive number yab such that the control error satisfies the condition

|yb(t)| � yab , t0 � t � t1.

The system output can exceed the value yab

sup
t0�t�t1

|y(t)| > yab

because of the transient process generated by the initial conditions and the initial value of the
exogenous disturbance.

The duration and relative value of exceeding the number yab are characterized by the control
time and overshoot.

Control time is the least time treg when the inequality

|y(t)− yb(t)| � ε, t � treg

is satisfied, where ε is the given positive number.

The value ε = 0.05 supt0�t�t1 |y(t)| is accepted for the unit step-type or harmonic reference sig-
nal [1, 2].

Overshoot is given by

σ =

sup
t0�t�t1

|y(t)| − sup
t0�t�t1

|yb(t)|
sup

t0�t�t1
|yb(t)| × 100%.

The phase stability margins (ϕz) and absolute value (L) [1, 2] of system (1), (2) are established
by applying to plant (1) the signal (− sinωt) instead of the control and measuring the controller
output u = a(ω) sin(ωt+ ϕ(ω)). The stability margins are determined using the functions a(ω)
and ϕ(ω).

With such definition, the system may lose stability because of its opening. To determine the
stability margin, one makes use, therefore, of its radius [9]

ra = inf
0�ω<∞ |v(jω)|, (6)

where v(jω) = 1 + a(ω)ejϕ(ω) = 1 + w(jω) is the function of recurrent difference with the transfer
function of the open-loop system w(jω). It is determined experimentally without opening the
system. If ra � 0.75, then ϕz � 42◦, L � 1.7, and ϕz � 60◦, L � 2.0 for ra � 1.

Problem 2.1 lies in determining for the given fully controllable and fully observable plant (1) of
the controller (2) satisfying the requirements on

• precision

|yb(t)| � y∗, (7)

• performance

treg � t∗reg, σ � σ∗, (8)
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• stability margins

ra � r∗a, (9)

where y∗, t∗reg, σ∗, and r∗a are the given positive numbers.

Remark 2.1. As a matter of fact, the requirements on the system indices obey the inequalities

ayy
∗ � |y(t)| � y∗, att

∗
reg � treg � t∗reg,

aσσ
∗ � σ � σ∗, arr

∗
a � ra � r∗a,

(10)

where ay, at, aσ, and ar are the given positive numbers (ay < 1, at < 1, aσ < 1 and ar < 1) rep-
resenting the tolerances on the deviations from the numbers y∗, t∗reg, σ∗, and r∗a. The point is
that under conditions (7)–(9) it may happen that the calculations result in controller (2) providing
the control error several times smaller than y∗ for an exogenous disturbance close to the bound-
ary f∗. Then, such precision of measuring the function y(t) requires a hardware more precise then
necessary.

A similar situation exists with the speed: if the control time is several times shorter than the
required value t∗reg, then the actuators are overloaded, system has noise-immunity, and so on. The
further presentation is based on the aims (7)–(9), but it can be often developed for the case of (10).

2.2. Problem Reduction

By performing the Laplace transform of Eqs. (1), (2) under zero initial conditions, we represent
them as

d(s)y = k(s)u+ c(s)f, (11)

g(s)u = r(s)y, (12)

where

d(s) =
n∑

i=0

dis
i, k(s) =

m∑

i=0

kis
i, g(s) =

nc∑

i=0

gis
i, r(s) =

mc∑

i=0

ris
i, c(s) =

p∑

i=0

cis
i.

We express requirements (7)–(9) using the system transfer function and its characteristic poly-
nomial. The transfer function of system tyf (s) relating the output to the exogenous disturbance is
given by

tyf (s) =
g(s)c(s)

d(s)g(s)− k(s)r(s)
. (13)

Requirement (7) on precision is satisfied if

sup
0�ω<∞

|tyf (jω)| � y∗

f∗
. (14)

Indeed, under disturbance (3) the output of system (1), (2) is given by (5).

Taking into account constraints (4), we put down

|yb(t)| �
∞∑

i=0

|a(ωi)| �
∞∑

i=0

|tyf (jωi)||fi| � sup
0�ω<∞

|tyf (jω)|
∞∑

i=0

|fi| = f∗ sup
0�ω<∞

|tyf (jω)| � y∗,

and (14) follows from the last inequality.
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The system characteristic polynomial is given by

ds(s) = d(s)g(s) − k(s)r(s).

Assuming now that nc = n, we order the absolute values of the real parts of the roots ss,i,
i = 1, 2n, of this polynomial:

|Ress,1| � |Ress,2| � . . . � |Ress,2n|.

The control time is characterized by the number

treg = β|Re ss,1|−1,

where β is a positive number; β = 3 if |Ress,2| and the absolute values of the real parts of the roots
of polynomials g(s) and c(s) in the transfer function (13) are sufficiently great as compared with
the number |Re ss,1|.

We assume that requirement (8) on the time of control is satisfied if

|Re ss,1| � βt∗−1
reg . (15)

Expression (6) is expanded into

r2a = inf
0�ω<∞ |1 + w(jω)|2 ,

where

w(s) = −k(s)r(s)
d(s)g(s)

.

We assume that the system has stability margins if

ra � r∗a, (16)

where, in particular, r∗a = 0.75.

Let us consider the Bézout identity

d(s)g(s) − k(s)r(s) = ψ(s), (17)

where ψ(s) is the polynomial of degree 2n with roots having negative real parts.

For the controller polynomials g(s) and r(s), under deg d(s) = n, deg r(s) = n− 1 this identity
has a unique solution which is established as that of the system of linear algebraic equations obtained
by comparing the coefficients at the identical degrees s in the left and right sides of identity [13].

Problem 2.2 lies in determining the coefficients of the polynomial in the right side of identity (17)
such that system (1), (2) satisfies conditions (14), (15), and (16).

Solution of Problem 2.2 is essentially dependent on the properties of the plant polynomial k(s).
We further assume that the roots of the polynomial k(s) have negative real parts. In this case,
(1) is called the minimum phase plant.

3. STRUCTURES OF THE POLYNOMIAL IN THE RIGHT SIDE
OF THE BÉZOUT IDENTITY AND CONTROLLER POLYNOMIALS

We take the following structure of polynomial (17):

ψ(s) = ε(s)k(s)δ(s), (18)
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where ε(s) is the realizability polynomial of the degree n−m−1 required for controller realizability
(the realizability condition deg g(s) � deg r(s)), δ(s) is the basic (main) polynomial of degree n
with the real roots (−sδ,i), i = 1, n:

δ(s) = δn

n∏

i=1

(s+ sδ,i)

where we assume below that, if not otherwise stated,

δn = dn > 0. (19)

If the degree of the polynomial k(s)
m = n− 1,

then the controller is realizable for ε(s) = 1, and the Bézout identity (17) has the evident solution

g(s) = k(s), r(s) = d(s)− δ(s).

If the degree of the polynomial k(s) is less than n−1, then controller (2) is not realizable because
the degree of the polynomial r(s) is n− 1. In this case, the realizability polynomial is given by

ε(s) = ερs
ρ + . . . + ε1s+ 1,

where ρ = n−m− 1 and the roots ε(s) have negative real parts.

The structure of the polynomial g(s) is given by

g(s) = gε(s)k(s) (20)

where
gε(s) = gε,ρs

ρ + . . . + gε,1s+ gε,0.

The coefficients of the realizability polynomial are selected so that

εi = νiεi−1, i = 1, ρ, ε0 = 1, (21)

where νi, i = 1, ρ are sufficiently small positive numbers such that the roots of the polynomial ε(s)
have negative real parts.

Condition (21) is satisfied if one assumes that

ε(s) =
ρ∏

i=1

(
μi
sδ
s+ 1

)
, (22)

where sδ = max[sδ,1, . . . , sδ,n], i = 1, ρ and μi, i = 1, ρ are sufficiently small different positive
numbers.

Taking into consideration the structure of the modal polynomial and the polynomial g(s), we
represent the Bézout identity as

d(s)gε(s)− r(s) = ε(s)δ(s).

Assertion 3.1. For sufficiently small numbers νi, i = 1, ρ, the coefficients of the polynomials gε(s)
and r̃(s) which are solution of the identity

d(s)gε(s)− r̃(s) = δ(s)ε(s),

are given by
gε,i = εi + 01, i(ν), r̃j = rj + 02, j(ν), i = 1, ρ, j = 0, n− 1,

where 01, i(ν) and 02, j(ν) are the functions vanishing with the vector ν =[ν1, . . . , νρ]:

lim
ν→0

01, i(ν) = 0, lim
ν→0

02, j(ν) = 0, i = 1, ρ, j = 0, n − 1.

This and the subsequent assertions are proved in the Appendix.
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4. DESIGN OF CONTROLLERS

4.1. Stability Margins

Using the recurrent difference
v(s) = 1 + w(s),

we conclude that the system has stability margins if

|v(jω)| � r∗a, 0 � ω <∞. (23)

Divide the Bézout identity (17) by the polynomial d(s)g(s) and find the following expression:

v(s) = 1 + w(s) =
ψ(s)

d(s)gε(s)k(s)
=

ε(s)δ(s)

gε(s)d(s)
=

ε(s)δ(s)

[ε(s) + 01(s, ν)]d(s)
.

Disregarding the polynomial 01(s, ν) which vanishes together with the vector ν, we represent
condition (23) as

|δ(jω)|2
|d(jω)|2 � r∗a, 0 � ω <∞, (24)

which in the expanded form is given by

|δ(jω)|2
|d(jω)|2 =

n1∏
i=1

(ω2 + s2δ,i)
n1+n2∏
i=n1+1

(ω2 + s2δ,i)(ω
2 + s2δ,i+1)

n1∏
i=1

(ω2 + s2d,i)
n1+n2∏
i=n1+1

[ω4 + 2(2ξ2d,i − 1)s2d,iω
2 + s4d,i]

� r∗a, (25)

where (−ξd,i ± j
√
1− ξ2d,i)sd,i, ξ

2
d,i � 1, i = n1 + 1, n1 + n2, (n1 +2n2 = n) are complex roots, and

(−sd,i), i = 1, n1, are real roots of the polynomial d(s).

Assertion 4.1. System (11), (12) with controller obtained from the Bézout identity (17) with
polynomial (18) has the radius of stability margins ra = 1 if the absolute value of the roots of the
polynomial δ(s) satisfies the inequalities

sδ,i � |sd,i|, i = 1, n1, (26)

sδ,n1+1 � |sd,n1+1|, sδ,n1+2 � |sd,n1+1|, . . . , sδ,n−1 � |sd,n|, sδ,n � |sd,n| (27)

and the numbers μi, i = 1, n −m, in (22) are sufficiently small.

This assertion was obtained in [14] for the case where the polynomial δ(s) has as many complex
roots as there are complex roots of the polynomial d(s).

The sufficient condition for providing the stability margins

sδ,i = |sd,i|(1 + ρi), i = 1, n, (28)

where ρi, i = 1, n are arbitrary nonnegative numbers, follows from this assertion.

As compared with (28), less constructive yet necessary conditions for stability margins can be
readily established from inequality (24).

Assertion 4.2. To provide the system stability margins, it is necessary and sufficient the there
be a polynomial h(s) of degree n such that its roots have negative real parts such that

|δ(jω)|2 − |d(jω)|2 = |h(jω)|2.
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Indeed, as follows from condition (24) for r∗a = 1,

a(jω) = |δ(jω)|2 − |d(jω)|2 � 0, 0 � ω <∞.

This inequality is satisfied if there exists the polynomial h(s) such that it has the negative real
parts and

a(jω) = h(−jω)h(jω) = |h(jω)|2 � 0.

The inverse is true as well. If
|δ(jω)|2 − |d(jω)|2 � |h(jω)|2,

then ra = 1.

Indeed, it follows from the last inequality that

|δ(jω)|2
|d(jω)|2 � 1 +

|h(jω)|2
|d(jω)|2 .

Since |h(jω)|2
|d(jω)|2 � 0, condition (24) is satisfied.

4.2. Time of Control

Order the absolute values of the roots of the plant and basic polynomial as follows;

|sd,1| � |sd,2| � · · · � |sd,n|, sδ,1 � sδ,2 � · · · � sδ,n.

One can readily see that the requirement on the control time is satisfied if

sδ,1 � βt∗−1
reg .

To provide the control time, it suffices to take the numbers ρi, i = 1, n, in equalities (28) as

ρi =
βt∗−1

reg

|sd,i| − 1, i = 1, n1, ρi = 0, i = n1 + 1, n, (29)

where n1 � n is the number of the plant roots with absolute values of the real parts smaller
than t∗−1

reg .

4.3. Control Precision and Overshoot for c(s) = c0

It follows from (13), (17), (18), and (20) that for sufficiently small μi, i = 1, ρ, in (22)

|tyf (jω)|2 =
|c(jω)|2
|δ(jω)|2 .

In the case of c(s) = c0,

|tyf (jω)|2 =
c20

δ2n
n∏

i=1
(ω2 + s2δ,i)

� c20

δ2n
n∏

i=1
s2δ,i

=
c20
δ20
.

We conclude from the last inequality and condition (14) that if

δ0 =
|c0|f∗
y∗

, (30)

then sup0�ω<∞ |tyf (jω)| � |c0|
δ0

= y∗
f∗ .

Thus, the following assertion is true.
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Assertion 4.3. The requirement on precision is satisfied if the free coefficient δ0 of the polyno-
mial δ(s) satisfies condition (30) and the numbers μi, i = 1, n −m, in (22) are small enough.

The overshoot is given by
σ = 0.

Indeed, the system transfer function has the form tyf (s) =
c0
δ(s) where the roots of the polyno-

mial δ(s) are real which implies that there is no overshoot because according to [15] under the

worst exogenous disturbance supt0�t<t1 |y(t)| = |c0|f∗
δ0

.

4.4. Design Procedure

Procedure 4.1 of controller design consists of the following operations:

1. Determine the roots of the modal polynomial from (28), (29) which provides stability margins
and the control time.

2. Compute the free coefficient of the polynomial δ(s):

δ0 = δn

n∏

i=1

sδ,i

and compare it with the desired number in the right side of (30).

If this coefficient is less than this number, then

3. On the basis of (28), generate the values

sδ,i = |sd,i|(1 + ρiqm), i = 1, n,

where qm > 1, and successively increase the number qm until satisfying the condition of item 2.

4. Determine the polynomials of controller (12), by solving the Bézout identity d(s)g(s)−
k(s)r(s) = ε(s)k(s)δ(s) where the polynomial ε(s) like (22) has sufficiently small numbers μi,
i = 1, n −m.

4.5. Control Precision in the General Case of the Disturbed Polynomial c(s)

In the general case, the polynomial c(s) is given by

c(s) = cp

p1∏

i=1

(s+ sc,i)
p1+p2∏

i=p1+1

(s2 + 2ξc,isc,i + s2c,i),

where cp is a number, (−sc,i), i = 1, p1, p1 + 2p2 = n are real roots, and (−ξc,i ± j
√
1− ξ2c,i)sc,i,

|ξc,i| < 1, i = p1 + 1, p + p2, are complex roots.

In this case, for dn = δn = 1 the system frequency transfer function goes over to

|tyf (jω)|2 =

c2p
p1∏
i=1

(ω2 + sc,i)
p1+p2∏
i=p1+1

[ω4 + 2(2ξ2c,i − 1)s2c,iω
2 + s4c,i]

p1∏
i=1

(ω2 + sδ,i)
p1+p2∏
i=p1+1

(ω2 + s2δ,i)(ω
2 + s2δ,i+1)

n∏
i=p1+p2+1

(ω2 + s2δ,i)

. (31)

Let the inequalities

s2c,i � s2δ,i, i = 1, p11, s2c,i � s2δ,i, i = p11 + 1, p1,

s2c,i � s2δ,i, i = p1 + 1, p22, s2c,i � s2δ,i, i = p22 + 1, p1 + p2

be satisfied for the roots of the polynomials c(s) and δ(s).
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We represent the transfer function (31) as

|tyf (jω)|2 = c2pβ11(ω)β12(ω)β21(ω)β22(ω)β3(ω),

where

β11(ω) =

p11∏
i=1

(ω2 + s2c,i)

p11∏
i=1

(ω2 + s2δ,i)
, β12(ω) =

p1∏
i=p11+1

(ω2 + s2c,i)

p1∏
i=p11+1

(ω2 + s2δ,i)
,

β21(ω) =

p22∏
i=p1+1

[ω4 + 2(2ξ2c,i − 1)s2c,iω
2 + s4c,i]

p22∏
i=p1+1

[(ω2 + s2δ,i)(ω
2 + s2δ,i+1)]

,

β22(ω) =

p1+p2∏
i=p22+1

[ω4 + 2(2ξ2c,i − 1)s2c,iω
2 + s4c,i]

p1+p2∏
i=p22+1

[(ω2 + s2δ,i)(ω
2 + s2δ,i+1)]

,

β3(ω) =
c2p

n∏
i=p1+p2+1

(ω2 + s2δ,i+1)
.

Assertion 4.4. If the condition

n∏

i=p1+p2+1

s2δ,i � β12(0)β22(0)
f∗2

y∗2
c2p (32)

is satisfied for n− p roots of the basic polynomial, then the requirement on precision is satisfied.

5. CONCLUSIONS

For the minimum phase plants, the relation between the structure and coefficients of the right
side of the Bézout identity with the indices (precision, speed, and stability margins) of the sys-
tem whose controller is the solution of this identity was established. This relation underlies the
method to design the controller providing the given values of the system indices in the absence of
measurement errors.
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APPENDIX

Proof of Assertion 3.1. We represent the identity under consideration in an expanded form
omitting the subscript ε in the polynomial gε(s):

(
dns

n +
n−1∑

i=0

dis
i

)( ρ∑

i=0

gis
i

)
−

n−1∑

i=0

r̃is
i =

(
δns

n+
n−1∑

i=0

δis
i

)( ρ∑

i=1

εis
i+1

)
. (A.1)
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By comparing the coefficients at the degrees s from n+ρ to n, we establish the following equation
system for determination of the coefficients gi, i = 0, ρ:

dngβ = δnεβ −
ρ−β∑

i=1

dn−i gβ+i +
ρ−β∑

i=1

δn−i εβ+i, β = 0, ρ. (A.2)

Expression (21) for the coefficients of the realizability polynomial means that

ερ � ερ−1 � . . .� ε2 � ε1 � 1 (A.3)

for sufficiently small νi, i = 1, ρ.

The right sides of Eqs. (A.2) contain the desired coefficients at the senior degrees of s, and the
left sides, the coefficients at the degrees s smaller by one. Therefore, we conclude with regard for
inequalities (A.3) and condition (19) that

gβ = εβ + 01,β(ν), β = 0, ρ. (A.4)

Now we compare the coefficients in identity (A.1) at the degrees s from n− 1 to 0 and find the
following system of equations for determination of the coefficients ri, i = 0, n − 1:

r̃n−α = dn−α g0 − δn−α ε0 +
n−α∑

i=1

dn−α−i gi −
n−α∑

i=1

δn−α−iεi, α = 1, n.

Since g0 is close to 1 (ε0 = 1) and the rest of the coefficients at di and δi, i = 1, n − α, can be
made arbitrarily small, we obtain r̃j = rj + 02,j(ν), j = 0, n− 1, with regard for (A.3) and (A.4)

Proof of Assertion 4.1. We consider two kinds of functions making up the left side of inequal-
ity (25):

a1(ω) =
ω2 + a21
ω2 + b21

, a2(ω) =
ω4 + 2a22c1ω

2 + a42
ω4 + 2b22c2ω

2 + b42
. (A.5)

These functions have the following almost evident properties.

Property 1. If a21 � b21, then a1(ω) � 1, 0 � ω <∞.

Property 2. If a22 � b22, c1 � 1, −1 � c2 � 1, then a2(ω) � 1, 0 � ω <∞.

With their use properties we consider the transfer function (25). It follows from Property 1 and
inequality (26) that

|δ(jω)|2
|d(jω)|2 �

n1+n2∏
i=n1+1

[ω4 + (s2δ,i + s2δ,i+1)ω
2 + s2δ,is

2
δ,i+1]

n1+n2∏
i=n1+1

[ω4 + 2(2ξ2d,i − 1)s2d,iω
2 + s4d,i]

=

n1+n2∏
i=n1+1

[ω4 + 2c1,is
2
δ,iω

2 + s2δ,is
2
δ,i+1]

n1+n2∏
i=n1+1

[ω4 + 2c2,is2d,iω
2 + s4d,i]

,

where

c1,i =
s2δ,i + s2δ,i+1

2s2δ,i
, c2,i = 2ξ2d,i − 1, i = n1 + 1, n1 + n2. (A.6)

One can easily see that c1,i � 1 because sδ,i+1 � sδ,i. Since |ξ2d,i| � 1, we have −1 � c2,i � 1, and
so under conditions (26) and (27) Property 2 is valid. Therefore,

|δ(jω)|2
|d(jω)|2 � 1.
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Proof of Assertion 4.4. We continue to study functions (A.5).

Property 3. If a21 � b21, then a1(ω) � 1, 0 � ω <∞.

Proof. Its proof follows the lines of Property 1.

Property 4. If a22 � b22, −1 � c1 � 1, c2 > 1, then a2(ω) � 1, 0 � ω <∞.

Proof. The expression

b42 − a42 + 2(b22c2 − a22c1)ω
2 � 0,

follows from this inequality. It is satisfied if

b22 � a22, b22c2 � a22c1.

If notation similar to (A.6) is introduced, then it follows from these properties

β11(ω) � 1, β21(ω) � 1, 0 � ω <∞.

Properties 1 and 2 define the lower bounds of the functions (A.5). Now we determine their upper
bounds.

Property 5. If a21 � b21, then

a1(ω) �
a21
b21
, 0 � ω <∞. (A.7)

Proof. With regard for definition (A.5), we present inequality (A.7) as

b21ω
2 + b21a

2
1 � a21ω

2 + a21b
2
1

which provides a21 � b21. Inversely, inequality (A.7) follows from the latter one.

Property 6. If a22 � b22, −1 � c1 � 1, c2 > 1, then a2(ω) � a42
b42
.

Proof. Represent the inequality as

b42ω
4 + 2a22b

4
2c1ω

2 + a42b
4
2 � a42b

4
2 + 2a42b

2
2c2ω

2 + a42ω
4,

or

(a42 − b42)ω
4 + 2a22b

2
2(a

2
2c2 − b22c1)ω

2 � 0.

The latter inequality is satisfied because a22 � b22 and a22c2 > b22c1.

It follows from Properties 5 and 6 that

β12(ω) �

p1∏
i=p11+1

s2c,i

p1∏
i=p11+1

s2δ,i

= β12(0), β22(ω) �

p1+p2∏
i=p22+1

s4c,i

p1+p2∏
i=p22+1

s2δ,is
2
δ,i+1

= β22(0).

Therefore,

|tyf (jω)|2 � β12(0)β22(0)β3(ω) � β12(0)β22(0)β3(0)

and then inequality (32) of the statement follows from the inequality

β12(0)β22(0)β3(0) �
y∗2

f∗2
.
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