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1. INTRODUCTION

The work quality of a real control system is characteri-
zed by technical indices: a maximum overshoot, settling
time, steady-state errors for each controlled variable,
stability margins etc. These technical indices checked
by the experiment are a language of task description on
a design of any control system.

The accurate control of steady-state is a control that
provides the specified tolerances on the steady-state er-
rors of the controlled outputs in the presence of the un-
measured external disturbance and measurement noise
with the known boundaries.

Note that the modern control theory uses axiomatic
indices such a value of a quadratic functional, cha-
racteristic polynomial roots and the H., norm of a
transfer function matrix of closed-loop system that are
axioms for LQ-optimization, modal control and H., op-
timal control. These effective methods of synthesis may
be used for real control system design if the connections
between the technical and axiomatic indices are estab-
lished. The first paper devoted by L@Q-optimal system

properties is the investigation [12] where it was shown
that for any linear control system with state feedback
(and, in particular, for a “bad” system in the sense of
the technical indices) may be found the quadratic func-
tional for which this system is optimal. An analogous
results take place for a Ho,-optimal [13] and /;-optimal
control systems [8].

The connections of technical and axiomatic indices for
L@-optimal systems have been investigated by a num-
ber of authors. Using the circle frequency condition ob-
tained in the paper [12] the boundaries of gain and phase
stability margin are derived in [1, 2]. The like boun-
daries for a multivariable optimal systems have been
derived by investigations [4, 16]. The connection of the
optimization functional coefficients with steady-state er-
rors under the step and harmonic external disturbance
has been derived in works [3, 5, 6, 18] for case minimum-
phase plant with output feedback and with state feed-
back (under condition that the controller outputs and
disturbances are applied to a plant in the same places).

The aim of this paper is a investigation of the accu-
racy problem of steady-state of H., suboptimal control
for the more general case of plant, external disturbance



and measurement noise. However, a standard H., sub-
optimal control [9] deals with finite energy signals (ex-
ternal disturbance and measurement noise) only, hence,
it has practical limitation when persistent disturbances
are present [14, 19].

In this paper we consider accuracy properties of H.,
suboptimal system under harmonic disturbances of un-
known frequencies. It 1s significant in order for the H,
control theory becomes a practicable tool for a control
system design-engineer.

It should be noted that well known results (see, for ex-
ample, [10, 17, 22, 23]) for rejection of harmonic dis-
turbances are proposed when frequencies of the exter-
nal disturbances are known. In this paper, however, we
deals with sinusoids of unknown frequencies. In con-
trast to [;-optimal control theory [14, 19] we consider
steady-state errors only.

The main results this paper are a physical interpretation
of He norm of transfer function matrix (section 3) and
connections between steady-state errors and weighting
matrices Riccati equations of H., suboptimal control
(section 5). The last result is analogous to the results
solving well known problem of coefficients choice of the
optimization functional for L@ problem.

2. PROBLEM STATEMENT

Consider the time-invariant system described by the fol-
lowing equations
x = Ax+ Biw+ Bou,

z=C01x, y=0Cx+n, (2.1)

).(r — Arxr + Brya u = Crxr + DTYa (22)

where x() € R" is a state vector of the plant (2.1),
u(t) € R™ is a control, z(t) € R™ is a controlled out-
put, y(t) € R" is a measured output, w(t) € R* is a
external unmeasured disturbance, n(t) € R™2 is a mea-
surement noise vector, x,(t) € R" is a state vector of
the controller (2.2). The constant matrices A, By, Ba,
Cy and Cy are known. The pairs (A, By) and (A, Ba)
are stabilizable and the pairs (C1, A) and (Ca, A) are

detectable. A,, B,, C, D, are unknown matrices.

The disturbance and noise components are the bounded
functions

lwi@)| <wi i=T1,pu |ni@) <nj j=1ma (2.3)
(where w (z =1L u),n; (_] = 1, my) are the given num-

bers) that may be represented as

P

w;(t) :Z (5f’k sinwkt—l—éf’k coswkt) i=1,p, (2.4)
k=1

l

Z (ozj’q sindkt—l—a;’q cos (Z)kt) Jj=1,ma2. (2.5)
g=1

Here the amplitudes 5f’k, 5f’k (z = m), (k = m),
ad? oS (_] = l,mz), (q = m) and the frequencies

n; (t)

J 077

Wk (k = m), Wq (q m) are unknown, however

p

(I ) <wit i=Tw (20
k=1

l

Yo (e P+lag?) <up® j=Tms,  (27)
g=1

where p and ! are given integers.

Determine steady-state errors of the system (2.1), (2.2)
as
Zist = tlg& sup |z ()] i=1,m (2.8)

and analogous determine steady-state values of the con-
trol as

T, m. (2.9)

wise = lim sup Jui(t)] i

Problem of accurate control of steady-state consists in
finding of controller (2.2) such that the system (2.1),
(2.2) satisfies the requirements on accuracy

i=T,mi, (2.10)

*
Zisr < %

and to the tolerances on the steady-state values of the
control

Ui st S U:F = , M, (211)
where 27 (z =1, ml) and u; (z =1, m) are the specified
numbers.

Introduce radius of the steady-state

m1 P 2 m u 2
7,8t 7,8t
r?t = E — | + E — ] .
z; U,

i=1 i i=1 i

(2.12)

Problem 2.1 (Problem of accurate control of
steady-state). Find a controller (2.2) such that sys-
tem (2.1), (2.2) satisfies the following inequality

2 2
rstSV

(2.13)

for v < 1. If such a controller (2.2) does not exist then
find controller (2.2) and a tolerance v for that require-

ment (2.13) holds. |

A practical efficiency of this problem solution depends
on difference v? — 1.



3. STEADY-STATE VALUES LEMMA

Let T,y (s) is a stable (my x ) transfer function matrix
from external signal w to output z (n = 0, for simplic-
ity).

z(8) = Tyow (s)w(s), (3.1)

and A, B, C' are matrices its minimal state space real-
ization

Tow(s) = C(sI — A)71B. (3.2)

The next bounded real lemma (see, for example, [11,
15, 21]) is the direct corollary of the famous so-called
Kalman-Yakubovich-Popov lemma: Let Q = Q7 is any
positive-definite matrix and v > 0 is a given number,
then the frequency inequality

Tgw(_jw)QTzw (]w) S 721, € [O’OO) (33)

holds iff exist positive-definite solution P > 0 of the
quadratic matrix equation

ATP4+ PA+~472PBBTP = -CTQcC. (3.4)
If Q = I then aim condition of H., suboptimal control
theory follows [9] from inequality (3.3).

Now, consider physical sense of the frequency inequality
(3.3) with respect introducing definitions (2.8), (2.9).
Suppose that external signal w from (3.1) has a view
(2.4), (2.6) and consider, for convenience, diagonal

weighting matrix @ in (3.3): @ = diag[q1, ¢2, .-, m)s
gi >0 (i=T,my).
Introduce the vector w* = [w}, w3, ..., wi]’ with

components from the right side (2.6), and determine
the standard Euclidean norm of this vector |[|[w*|| =

/ (w*)Tw*. Then the following result takes place.

Lemma 1 (Steady-State Values Lemma). Let the
frequency inequality (3.3) holds. Then steady-state out-
puts of the system (3.1) satisfy the following inequality

ma
Yo aizta <Al (3.5)M
i=1

Proof: Steady-state outputs of the system (3.1) are
described as

P

ZaZ w ) sin(witg; (wg)) ¢ =1,mq,

k=1

Zist = }i}m Zz
00

(3.6)
where a;(wg) > 0 and ¢; (wg) (z =1,m, k= m are

amplitudes and phases of the forced oscillation.

It is obviously that

P
zi st < Zai(wk) 1=1,m. (3.7)
k=1

Using the Coushy-Bunyakovsky inequality [7]:

(Zp: ai(wi) ) <pZ (3.8)

k=1
it is easily obtained on the base of (3.7) that
Z(h Zst<pZZ(h (39)
k=11i=1

On the other hand, expression (3.1) and inequality (3.3)
give

S gia? (i) = 64 TE,
i=1

(_jwk)QTzw (]wk)(s(k) S

(3.10)

8 = \JI6F 12+ 165F12 (i = T), (k=T,p)

Lemma 1 follows from inequalities (3.9), (3.10) and
(2.6). |

Note that the estimation (3.5) is achievable.

4. STATE FEEDBACK

First consider case when the state vector of the plant
(2.1) is available for feedback and the measurement noise
1s absent. It means that

Introduce new controlled output

E:€1$+D12U, (4 2)
C, =[cTQY? 0, DI, =10, RV,
where matrices C; and Dy, satisfy the following pro-
perty
D1,[Ch, Do) = [0, R], (4.3)

and Q@ = QT, R = R” are any positive-definite matrices.
Consider the next problem: find the state feedback con-

trol law

u=D,z, (4.4)



such that the following condition holds
T (=j9)QT (jw) < 771,

where T+, (s) = (C1+ D12D,)(sI — A— By D, )1 By and

~ > 0 is a given number.

w € [0, 00) (4.5)

It is well known standard H., suboptimal control prob-
lem [9]. The solution this problem on the base the
bounded real lemma was derived, for example, in [20].

The control law has a view

u=D,z, D,=-R'BIP (4.6)
where P = PT > () satisfied the algebraic Riccati equa-
tion (ARE)

AT P4PA-PB,BY P+y~2PB, Bl P=—CTQCy, (4.7)

which differs from usual ARE H., suboptimal control
theory [9] by weighting matrices @ # I and R # I.

These weighting matrices play important role for main
results of this paper. It will be shown in the sequel that
accuracy of closed-loop system (2.1) ,(4.6) is depend on
the choice of matrices () and R.

In linear-quadratic optimal control theory so-called op-
timal frequency condition (circle condition [12]) for

transfer matrix of the open-loop system plays an impor-
tant role [2, 5, 12, 16].

An analogous condition may be derived in H, subopti-
mal control theory, which is called y-optimal condition
in the frequency domain. The main difference of this
condition from circle condition consists in that the for-
mer includes transfer matrix of the closed-loop system

(2.1), (4.6).

To obtain y-optimal condition denote A= A+BsD, and
determine the following closed-loop transfer matrices

Tow(s) = Ci(s] — A)~' By, (4.8)
Tyw(s) = Dy (sI — A)™' By, (4.9)
Tw(s) =77 2B T P(sI — A)~' By, (4.10)

which connect external disturbance w with initial con-
trolled output z, control u and vector of the “worst”
disturbance in the L2[0, c0) sense [9].

Theorem 1. The transfer matrices (4.8)-(4.10) of
closed-loop suboptimal system (2.1), ({.6) satisfy the fol-
lowing identity (y- optimal condition in the frequency
domain)

(=T ()" =T (jw)] =7 I=T7, (—jw) QT (jw)—

~T1, (—jw) Ry (jw), w€[0,00).  (4.11)M
Proof: Using a closed-loop system matrix A = A +

By D, the equation (4.7) is represented as
ATP4+PA4~~?PB BT P+PB,R™'BI P = —CTQC.

From the last equation after adding and subtraction
sP and multiplication of the obtained expression by
BY(—sI — AT)=! and (sI — A)~!B; from the left and
from the right respectively the required result follows if
connections (4.6),(4.8)-(4.10) take into account. u

Corollary 1. The transfer matrices ({.8), (4.9) of the
closed-loop Heo suboptimal system (2.1), (4.6) satisfy
the following frequency inequality

T2 (=) QT (jw) + Ty (—jw) RTuw (jw) < 571,

w € [0, 00) (4.12)m
Proof: Tt is obvious since the left part of identity (4.11)
is a positive definite matrix, hence, the right part gives
the required result.

Note that the inequality (4.12) is merely another form
of the aim condition (4.5).

Let the weighting matrices ) and R from ARE (4.7) are

g >0 i . (4.13)

Q:diag[qla q2, ..., (]ml]a

=1,m
R = diag[ry, 7o, ... >0 i=1,m, (4.14)

) rm]’

Then the following theorem takes place.

Theorem 2. The steady-state errors and steady-state
values of the control components of the closed-loop H
suboptimal system (2.1), (4.6) satisfy the inequality

mi m
S gzt + > il < y7pllw P (4.15)m
i=1 i=1

Proof: This result is the direct corollary of the lemma
1 and follows from frequency inequality (4.12). |

Note that the estimation (4.15) is achievable and may
be used in order to choice weighting coefficients of the
matrices () and R such that controller (4.6) provides a
accuracy requirement (2.12). In particular, let weighting
coefficients be

pllw|?

(uf)?

and denote 7* a minimal value v for that a solution

P > 0 of ARE (4.7) exists.

pllwrl? . —
f]i_W i=1,m;

7> i=1,my, (4.16)



Corollary 2. Let the weighting matrices ({.13), ({.14)
satisfy the inequalities (4.16). Then steady-state errors
and steady-state values of the control components of the
closed-loop Hoo suboptimal system (2.1), (4.6) satisfy
the following inequality

my . 2 ma ws 2
> () e () <o

i=1 i i=1 i

(4.17)M

Proof: This result i1s the direct corollary of the inequ-
alities (4.15) and (4.16). |

So, from inequalities (2.12) and (4.17) we now conclude
that radius of the steady-state of the closed-loop system
(2.1), (4.6) 72, > 2.

Note, that if By = By then an ARE (4.7) for all v > 1

is the usual ARE of the L@ optimal control theory and

its solution P > 0 exist. In this case r2, — 1, hence,

inequalities (2.10), (2.11) are fulfilled.

5. OUTPUT FEEDBACK

Let the measured output of the plant (2.1) be

y=Cox+1, (5.1)

Introduce the vector w = [w?, #T]7 and find the con-

troller (2.7) such that the following aim condition holds
Tgw(—jw)Tgw(jW) S 721, we [Oa OO), (52)

where Tzg(s) is the closed-loop transfer matrix of the
system (2.1), (2.2) from signal @ to controlled output z
(4.2), v is a given number.

It is well known standard H., suboptimal output feed-
back problem [9]. The solution of this problem on the
base the bounded real lemma was derived in paper [20].

The control law is described by
u=—R™'B! Pz, (5.3)

where P = PT > ( is the positive-definite solution ARE
(4.7), x, is the state vector of the observer

&, = Az, + Bou+ Biw, + K¢ (y — Chzy), (5.4)

in which
w, =~y *Bf Pz,, (5.5)

is the estimation of the disturbance and K is the ob-
server gain matrix

Ki=(I—-~2YP) V(7 (5.6)

where Y 18 a positive-definite solution ARE:
AY4Y AT 42y cPQC Yy -y €T CoY =—B BT, (5.7)

and he following condition must be fulfilled
Amax (Y P) < %7, (5.8)

where Apax (M) is a maximum eigenvalue of a matrix

M.

Write the transfer matrix Tgg(s) in view (4.2) as

fato) = [ G0l | (5:9)

where T, (s) and Ty (s) are matrices of the closed-loop
system (2.1), (5.3)-(5.7) from @w to z and from @ to u
accordingly.

Then frequency inequality (5.2) may be represented as
Tl (=jw) QT (jw) + Ty (—jw) RTug (jw) < 5°1

w € [0,00) (5.10)

Let weighting matrices () and R have a diagonal form

(4.13), (4.14).

Theorem 3. The steady-state errors and steady-state
values of the control components of the closed-loop H
suboptimal system (2.1), (5.3)-(5.7) satisfy the following

mequality
my m
YoaiEla Y il <V e+, (511)
i=1 i=1

where ||w*|| is a E Buclidean norm of the vector w* =
* * * * « 17

[wi, w3, ..., wi, 01, ..., 0y,]" whose components are

took from the right parts inequalities (2.6), (2.7). u

Proof: The result follows from frequency inequality
(5.10) after application of lemma 1. |

Note, that if diagonal elements of the weighting matrices
@ and R satisfy the following conditions

D|lw*|?
g > L) +( )*llizu | i =1,my;
zr
il 5.12)
)| — (
s (p+1)][w| i=Tm,

- (W)

then next result solving the problem 2.1 is true.

Corollary 3. Let the weighting matrices ({.13), (4.14)
satisfy the inequalities (5.12). Then steady-state errors
and steady-state values of the components of the control



of the closed-loop Ho, suboptimal system (2.1), (5.3)-
(5.7) satisfy inequality (4.17).

Proof: This result follows from inequalities (5.11) and

(5.12). |

So, the radius of steady-state of the closed-loop system
(2.1), (5.3)-(5.7), (5.12), r%, < 4*?, where * is a mini-
mal value 4 for that the solutions P > 0 and Y > 0 of
AREs (4.7), (5.7) are exists and condition (5.8) holds,

and therefore in problem 2.1 v = ~*.

10.

11.
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