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Abstract: An adaptation algorithm of controller coefficients for a linear
plant with unknown coeflicients in the presence of unknown-but-bounded
disturbance is proposed. Control aim is the prescribed tolerance on the
steady-state error of plant output. The algorithm makes use of a sufficiently
small test signal that allows to identify the plant and closed-loop system.
Controller is designed by procedure of Hy, control modified in accordance
with requirement of prescribed accuracy.
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1. INTRODUCTION

The last two decades adaptive control in
the presence of an unknown-but-bounded
disturbance is being studied. A number
of control algorithms have been developed
based on the recurrrent target inequali-
ties [1], least squares estimation with dead
zone [2] and frequency approach [3].

In these methods, the control objective is
described by a polynomial with prescribed
pole placement, and this control is referred
to as modal adaptive control [1].

For most cases, the control objective can-
not be described by a polynomial, but rather
contains requirements to steady-state error,
maximum overshoot, settling time, etc.

The problem of accuracy of adaptive con-
trol (where the control objective is the ac-
curacy of control for steady state) for the
minimum-phase plant was solved in [4]. The
frequency approach under unknown polyhar-
monic disturbance and minimum-phase plant

was proposed in [5].

In this paper, the frequency approach is
developed for the case of nonminimum-phase
plant. It is based on the modal frequency
adaptive control [3] and the technique [6] of
accurate control of steady-state.

2. STATEMENT OF THE PROBLEM

Consider a completely controllable plant
described by the following differential equa-
tion

y(n)+dn_1y(n—l)+...+dny: (1)
kmu(m) + -+ kou + mof, tZto:O,

where y(t) is a measured output, u(¢) is the
input to be controlled, y), w() (1 =1,n,
j = 1,m) are the derivatives of these func-
tions, the coefficients d; and k; (z =0,n-1,
j:O,—m) are some unknown numbers, n,
m < m, and mg are known, f(t) is the fol-
lowing polyharmonic function:

) = fem@lt ), @)
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where w{ and qﬁf, i = 1,2..., are un-
known frequencies and phases; the am-
plitudes f;, ¢« = 1,2..., are unknown-but-

bounded numbers satisfying the inequality
i=1

where f* is a given number.

The problem is to find a controller

gnu(n) _|_ P _|_ gou e} (4)
:rn—ly(n_l)"i'"'"i'roya tZtN

such that the plant output of system (1), (4)
meet the following requirement:

Yst S y*a (5)

where ys; 1s the steady-state deviation of
the plan output which is defined as y;; =
limy, o0 sup |y(¢)| and y* is a given positive
number.

In order to solve the problem, the plant
input is formed by the following controller
with piecewise-constant coefficients

=T =1 gyl (6)
ticg<t<t;, ¢t=1N

where % (z =1, N) is an adaptation interval
number,

(e = Ty Al o]t — 1),y
tio <t <t 1 =1L, N

are the test signals with the specified test fre-
quencies wg] and amplitudes pg] (k =1,86,

i=1,N).

On some of adaptation intervals, partic-
ular for i=1,the differential equation (6) is
algebraic equation v = vl i € [1,N].
It means that the equation(6) has the co-
efficients gg] = rg] =0 (k:l,—n), g([)z] =
1,1”([;] = 0 In such cases the test signal (7)
contains n harmonics (# = n) and in remain-
ing cases 6§ = 2n.

The frequencies of the disturbance and test
signals must not coincide:

wi#o i=TN j=168 k=T (8)

Since the disturbance frequencies are un-
known it is necessarly to examine inequality
(8) by experiment.To this effect the following

functions are introduced

T

2 PN I
lo(T) = — t) sinw;, tdt,
=2 [aesin
OT
Lo () = == | 4(t) cos wlltat ©)
T)= — cosw ,
B onT Y k
k=160, +:=1,N
where g(t) is plant output when vll(t) = 0
(i=1,N),
If
la(r) <€ty 1s(r) < efs (10)

where €f and eg k = 1, 6 are sufficiently small
given numbers, 7 is sufficiently large number.
If the conditions (10) hold then above men-
tioned frequencies do not coincide [3].

The amplitudes of test signal (7) have to
meet the following conditions of small exci-
tation [3]

|yt — g (#)] < &, i=LN, (11)
where ylil(2) is the plant output on the ith
interval of adaptation, gll(¢) is the same out-
put for oIl =0, €y is a given number. Re-
quirements (11) mean that the test signal
must not strongly change the “natural” out-

put 3t().

In this paper ways of amplitudes tuning
providing the conditions (11) as well as test
frequencies tuning described in[9] is not con-
sidered and so upper index [7] in notations is
omited and it is assumed that these ampli-
tudes and frequensies are specified.

The ending time of each adaptation in-
terval ¢; (i = 1, N) is found in an adapta-
tion prosses.In addition,these moments have
to satisfy the following inequalities

ti—ti_1 > ti_l—ti_g—l—t*, 1 =2,3,..., (12)

where ¢* is a given positive integer to be suf-
fitienly large. These inequalities is named
conditions of wideness of adaptation inter-
vals.

After ending of adaptation (in moment
tn) the controller described by equation (4)
where

g =g, ri=r"

i=0,n—1. (13)

Problem 2.1 Find an adaptation algo-
rithm for coefficients of controller (6) such
that the system (1), (4) meet the demands
(5) to steady-state accuracy.



3. PROBLEM SOLUTION FOR KNOWN
PLANT COEFFICIENTS

Let the coefficients d; and k; (1=0,n—1,
j=0,m) of plant (1) be known.

Equation (1) may be written in state space
as

t=Ax+bif+bu, z=y=cox (14)

where
0 0 0 —dy
1 0 0 —dq
A = . . 9
0 0 -+ 1 —dp_
c2=1[0 0 0 1], (15)
[ mo ko
0 kq
bl = . b2 == .
| 0 km

z 18 the controlled variable coinciding with
the measured output.

Consider a controller described by the fol-
lowing equations

u = ke,
. = Az.+ bou+ blfcxc + kc(y - c2$c)7
(i6)
where z.(t) is a state vector (its dimension
is n) of the controller,

k= —bgP, ch"y_zb,{P,

—3y py\-ly T (17)
ke=I—~77°YP) Y3,
P andY are square non-negative definite ma-
tricies of dimension n x n. They are solutions
of the following algebraic Riccati equations

AT P4+ PA— Phybl P+
Zapy T * (18)

+y7 " Pbiby P = —c3 290

AY + YAT — YT e Y+

—|—’y_2YCgCgY = blbflo (19)

where v is a number that is found such that
together with non-negativeness of matricies
P and Y the following condition hold

Amax(-PYv) < "}’2 (20)

where Amax(M) is a maximal eigenvalue of
matrix M, go and [y are some positive num-
bers (g0 = lp = 1 in standard H optimal
control [8]) that are determined such that the
requirements (5) to stade-state errors hold.

Assertion 3.1 If the number ¢g meets the

demands
*2

qo > el (21)

then
yZ <y iyg T, (22)

where 4* is a minimal value of ~. u
Assertion proof is given in Appendix.

Assumption 3.1 There exsists number
go such that controller (16) with coeffitients
(17) provides performance of requirements

(5). |

Coefficients of the searched equation (4)
connect with the coefficients of equation (16)
as

g(s) = det(Is — A¢),

r(s) = kadi(ls — Ak, 29

where adj is a simbol of the adjugate matrix,
Ao = A+ bok — koos + bife. (24)
4. THE FIRST INTERVAL OF
ADAPTATION
4.1 Plant identification.
If the plant (1) is asymptotically stable

then solution of problem 2.1 is as following.
Plant (1) is exited by test signal:

u(t) = pll (t) = Zpk sin wyt, (25)
k=1

and its output is applied to inputs of the fol-
lowing Fourier’s filter

2 trp+T7
& = ap(d) = — y(t)sinwg (t —tp) dt
PET
tp
2 trp+T7
Br = Br(6) = — / y(t) cos wit(t —tp) di
PET ;
F

k=1,0,0 =norf=2n
(26)
where 7 is a filtering time, ¢z is a filtering
start time, 7 and tgx is multiple some basic

2
period T = _7r’ (r =4qT, tp = ¢TI, q =
Wy

1,2,... ¢ is a given interger), where wp is a
basic frequency and test frequencies are mul-
tiple of number wp: wi = cpwyi (k = Zl,_n),ck
(k = 1,_n) are positive integers,on this inter-
val 8 = n, &, and By, (k = 1,n) are the
estimates of frequency domain parameters
(FDPs)[3],which are a set o = Re w(jws)
LBr = Im w(jwg) , k = 1,n where w(s) is
the plant transfer function.

The outputs of Fourier’s filter are mea-
sured in time moments § = ¢T', ¢ = ¢ + 1,
q+2,....



The following frequency equations[3] are
solved for these moments

m

> " (Gwr) ki (8) — [ (6) + 3B (8)] -

(jwr) di(8) = [ex(6) + jBr(9)] (Fwr)®

k=1,6,0=nor6=2n

[4

=0

(27)
and estimates of plant coefficients d;(¢T),
ki(qT) (i:O,n—l), g =q+1,q+2, ...
are obtained.

In order to determine time of the first in-
terval ending the following necessary condi-
tlons are examined

|di(¢T) — di [(¢ — 1)T]|
|k (@T) — kj [(q — 1)T] ;
1:07n_17j:07m q2§+27(j+37 .

d Eo(;_ o
where ef and €] (i = 0,n— 1,7 = 0,m) are
given numbers.

These inequalities are examined for each
g till they hold for some ¢ = ¢; and then
t1 =q1T.

4.2 Controller design .

Using the estimations dg»l] = d;(q1T) and
MY = ki(@iT), (6 = 0on—1.j = 0,m) the
coefficients (17) of controller(16) is calcu-
lated. To this effect the Riccatl equations

(18) and (19), where go is determined by

inequality (21) and d; = dgl], ki = kg»l],
i =0,n—1,7 = 0, m,are solved. Then poly-

nomials of controller(6)

g[z](s)u = r[z](s)y +v (29)

for the second interval of adaptation are
found by formulae(23)

Rewrite the system (1), (29) as

oP(s) = d(s)g®(s) — k(s)rP(s)  (31)

is characteristic polynomial of closed- loop
system (1),(29)

Introduce an assumed polynomial of this
system as

PEI(s) = d(a)gl(s) — ()7 () (32)

It coincides with the polynomial ¢[?(s) when
the identified and true plant polynomials are

equal( dt(s) = d(s), kM(s) = k(s)) and
therefore, differences of coefficients A; =
|1/)Z[»2] - 9052] |, (i = 0,2n) of polynomial 4!2(s)
and ¢!2l(s) characterizes identification accu-
racy.

5. THE SECOND INTERVAL OF
ADAPTATION

5.1 Closed-loop system identification.

System (1), (29) is excited by test signal
(7) (where 8 = 2n) and its output is applied
to the following Fourier’s filter (26), where
0 = 2n.Outputs of the filter are denoted as
D and fip, where D and fig, k = 1, 2n, are es-
timates of the following closed-loop FDPs [3]:

v, = Re we(jw),

Here we(s) = @4’;2]3(% is a transfer function of
the closed-loop system.

It is obviously that this transfer function
connects with the transfer function of plant
as

wei(s) = 1_ w(s)wcz](s (33)
where
2 7"[2](5) 2 1
w(s) = gBl(s)’ uil(s) = 9B (s)

Outputs this Fourier’s filter allow to find
coefficients estimates of characteristic poly-
nomial of system (1),(29) by solution of the
frequency equations (27), in which 6 = 2n,
d = ¢+ 1,¢2+ 2,...,qg1) and qél) is de-
termined from condition (12) that may be
rewritten as

Gi—qi—1> gic1—qi—a+k™, (i = 1,2,...) (34)

where k* = [%] is a interge part of number
t

T -

Necessary conditions of the closed-loop
identification convergence are

[ aT) - 6T — )T < €7,
ki (qT) — kil(¢ — 1)T]| < eF, (35)
1 =10, 2n, j=0m
where ¢ (¢ = 0,2n) are given positive

If for g = qél) inequalities(35) are violated

then the identification is continued till they
hold at a moment qéz)T.

Hi = Im wcl(jwk)ak = 172



5.2 Interval duration.

Duration of the second interval is deter-
mined by the following inequalities

! - P E) < el i=02m),  (30)
where § = qél)T or & = qéz)T and 6?},
(¢ = 0,2n) are given numbers. During in-
terval t3 — ¢; the following conditions

ly(t)| < y" — ey (37)

are examine.It means fulfilling requirement
to accuracy (5).

Now it is possible four cases:(a),(b),(c) and
(d). Consider each of them.
Case (a).If at a moment t; = qéz)T the con-
dition (36) hold and the requirement (37) to
accuracy is satisfied for some #*(¢; < t* <

qéz)T) such that the difference t* — ¢; is suf-
ficiently large, then the second interval is
ended and N = 2, ¢t = t(za) = tyn.The
searched polynomials of controller (4) are

g(s) = g[z](s), r(s) = r[z](s).

Case (b). If condition (36) hold at the

moment t; = qzz)T but the moment t*,for
which the requirement (37) satisfy, does not
exist then the second interval is ended and
ta = t(zb) = qu)T.

Case (c¢). Let condition (36) be violated at
the moment 5 = qu)T.It means,in particu-
lar, that identification accuracy, obtained as
a result of the first interval,is not sufficiently
and so the plant identification is continued.
To this effect, the estimates of the plant
FDPs a;(d) and B (d) (k = 1,n) are cal-

culated by the following formulae
ar(8) + Pk () =
vel8)  3yue(9)

[V () + jpu (5)}1 Wi (jur) + i (jwr)
=1,n,

b

(38)
where 6 = ¢T, ¢q = qéz) + 1,qé2) +2,...,
Expression(38) follows from equality (33).
Using new estimates of the plant FDPs the
frequency equations (27) are solved and nec-
essary conditions(28) are examined for qéz) +

1, + 2, .4l they hold for some ¢ =
qf),which has to satisfy the condition: qég’) —
(Jéz) > q1 + k¥, and then #5 = t(zc) = qé‘o’)T

(2] _

)

Repeating steps of subsection 4.2 for d
di(¢$°'T)
and kEZ] = kj(géS)T), (7’ = 0n-1j =
0,m) the polynomials of the following con-
troller

g[S](s)u = r[S](s)y +v (39)

for the third interval of adaptation and the
assumed polynomial of system (1),(39):

PEI(s) = d(5)g)(s) — B ) s) - (40)
are found.

Case (d)If at a moment t(zd) the plant out-
put y(t(zd)) = y**, where y** is a maximal
allowable output (for example,when |y(¢)| >
|y**| the plant may be not described by the
equation (1)), then the second interval is
ended and ¢ = t(zd). This case arises,for in-
stans, when system (1),(29) is unstable.

6. ADAPTATION CONVERGENCE
6.1 The third interval.

A contents of the third interval depends on
the cases (b), (c) and (d) that have arisen on
the second interval.Let us continue consider-
ing each of them.

Case(b). A cause of this case is relative

large values of adaptation algorithm param-

eters: 5?,6;?, i=0,n—1, j =0,m, 6:»9,6?

4,7 = 0,2n. In connection with it these pa-
rameters is decreased,for example they are
divided by two,and the operations of the sec-
ond interval is repeated.

Case (c). The operations of the second
interval with controller (39) and the assumed
polynnomial (40) are carried out.

Case(d). In this case the controller (29) is
switched off and plant (1) is exited by test
signal (6) under # = n and the operations of
the first interval are repeated,however, du-
ration of this interval is more than the first
one: gs — > > g1 + k*

6.2 Adaptation convergence.

If the frequencies of the disturbance and
the test signal do not coincide (condition
(8) hold) then functions (9) tend to zero:
iy, o0 I8 (7) = limy 400 1o (1) = 0, k =1,
and therefore identification errors Ad;(d) =
di — di(8) Akj(0) = k; — k(6) (i =
0,n—1,7 = 0,m) tend to zero as well.It
means that it exist a number 6* such that

|Adi(9)] <&, |Ak;(9)] <ef

(t=0n—-1, j=0,m), & > &% where
5flandéf (1t =0,n—1,j = 0,m) are any

given small numbers.



Problem is to achive the filtering time
0*.This value is achived due to the condi-
tions (12) of adaptation intervals widenness
and decreasing adaptation algorithm param-
eters.

Identification convergence allows to find
a controller for which the accuracy require-

ment (5) is fulfilled.
So,the following assertion is obviously.

Assertion 6.1 If the test frequencies sat-
isty the condition (8) then adaptation pro-
cess converges to a controller of view (4)
which provides the achivement of aim (5).
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8. APPENDIX

8.1 Proof of assertion 3.1.
Denote  ty¢(s) and t,4(s) the transfer
functions of system (14), (16):t,7(s) is a

transfer function from f to y, tus(s) does
from f to w.

Output of this system in the presence of
disturbance (2) when the time ¢ tends to in-
finity is

o0
y(t) = a(w])sin(w]t + ;) (41)
i=1

f

where a(w]) and &; (1 = 1,2,...) are ampli-

tudes of forced oscillations and their phases.

This expression result in the following es-
timate of steady-state output

e < 3 la(w])| (42)

It is obviously that
la(@{)| = Ity GoDIIfi] (G=1,2,...) (43)

Proof the assertion based on theorem [7]
which for lp # 1 may be formulated as: if
coefficients of controller (16) is found by for-
mulae (17)-(19) and condition (20) hold then
the transfer function of system (14),(16) sat-
isfies the followig inequality

(IO|tyf(j“’)|2 + |tuf(-7w)|2 S 72l0—1’ (44)
0<w <

Making use of this inequality the expression
(43) may be written as
jatw]) < 22

‘ Vqolo

Adding these inequalities and taking into ac-
count the boundary (3) it results in

Sl = o)

(i=1,2,..)  (45)

and therefore
gt
Yst <
"= Vaob

Estimates (22) follows from this inequality
under condition (21).

(47)



