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Abstract: Frequency method of identification for a linear continuous plant in the
presence of unknown-but-bounded disturbance is developed.

A way of a model validation is proposed. It is based upon enclosing of a plant by a
feedback that is designed using the plant coefficients estimates.

The harmonic test signal for unstable plant has a growing peak-to-peak value. The
algorithm of the test signal amplitude tuning is designed for the cases of the bounded

input of plant. It uses the feedback too.
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1. INTRODUCTION

In recent years several methods of linear plant
identification in the presence of an unknown-but-
bounded disturbance such as the least square
techniques (Wahilberg and Ljung, 1992; Milanese, 1994)
and the recurrent targetal inequalities method (Fomin,
et al. 1981; Yakubovich, 1988) have been developed.

The classical frequency approach (Eykhoff, 1974;
Unbehauen and Rao, 1990) where a plant is excited
by a harmonic test signal, allows to identify a stable
plant if a bounded disturbance does not contain the test
signal harmonics. This approach for an unstable plant
and disturbance of a general view has been developed in
the papers (Alexandrov, 1993, 1994) where it was named
a finite-frequency identification. The last method uses a
harmonic test signal with a growing peak-to-peak value
and that is why it is necessary to change identification

Identification, tests, frequency responses, bounded disturbances,

algorithm for a bounded input of a plant.

In this paper two problems are considered: validation
(Ljung, 1987 ) of the plant model obtained as a result
of finite-frequency identification and the way of finite-
frequency identification under a bounded test signal.
They are soived through the use of the feedback to form
the test signal.

2. FINITE-FREQUENCY IDENTIFICATION
2.1 Plant model.

Consider a completely controllable plant described by
the differential equation

Y™+ dy ™V 4+ dig+doy = Eyul ..

+houtf, t210 1)



where y(t) is a measured output, u(t) is an input
to be controlled, f() is an unknown-but-bounded
disturbance, ¥, ul), (i=T1,n, j=1,7) are
derivatives of these functions. The coefficients d;,
kj, (i=0,n—1, j=0,7) are unknown numbers, n
is known, v < n; the initial conditions (*)(¢) and
disturbance f(t) satisfy the following inequalities

W (to)| < eo, F <

where g9 and f* are positive numbers.

t=1,n-1, (2)

The plant input that is referred to as a test signal is

n
u(t) = peri—to Zsinwk(t — o)
k=1

©)

where p, A, wi (k = 1, n) are specified positive numbers,
p is an amplitude of the test signal, wy (k=T,n) are
‘the test frequencies w; # w;, i # j (i,j =1,n).

Identification problem is to determine the plant

coefficients estimates d;, k; (i=0,n~1) (j=0,7)

such that the identification errors
Ad; =d; —d;, Akj=k; —k;
meet the demands

|Aadi| < ef, |Akl<ed (i=0,n=1, j=0,7) (4)

where ¢f and ¢f (i=0,n—1, j=0,7) are specified

numbers.

2.2 Frequency domain paramelers (FDP).

Let Co denote an estimate of an unstability degree of
the plant (1} s*. Cp > s* = max{Resy,...,Res,},
where s; (i =1,n) are roots of the polynomial d(s) =
s" +dp_15""1 4+ --- + dp. For a stable plant Cy = 0.
Co may be obtained by experiment {Alexandrov, 1992 )
and that is why it is assumed to be known.

If the plant output y(2) is multiplied by e=*(:=%0) and the
product is applied to Fourier’s filter input then the filter
outputs give the frequency domain parameters estimates

ax(8)=2% f y(t)e"\(*"'")smwk(t —tp)dt=
_ak-}-ek(ﬁ) k—ln A>Co,()
,6;.,(6)—’” j y(t)e"\(‘““) coswi(t—2o)dt=
_ﬁk +ek(6): k:l,_n.

where tp is a filtering start time (tp > fp), 7 is a
filtering time, 73 = tF — ¢p is a delay of a filtering start,
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§ = 'rd + 7 is an identification time, A > Cy, £§(8)
and ¢ (6) (k=T,n) are the filtering errors, oy and
B (k _I—,H) are frequency domain parameiers (FDP)
of a plant. The FDP are linked (Alexandrov, 1989)
with the plant transfer function w(s) = k(s)/d(s) by
the expressions:

ar=Rew(A+jwi), Sr=Imw(A+jwi), k=1,n. (6)

If the test frequencies wy (k = I,_n) are multiple of
some basic frequency w* (that is wip = Lpw® where
L; are positive integer numbers (k = 1,7n)), 74 and
7 are multiple of the reference period T* = %%, then
the filtering errors satisfy (Alexandrov, 1994 ) the
inequalities:

leg(8)] < v(8), lef(®) <v(d) k=Tn (7)
where
2q1f 1—e"77 1—e™"
vé) = gedTe o | T
._QL@_ — 2B (g)
prqeiTe 'rqe‘m
™ = s +e, 9 = —5+A (g2 > 0), e isa

sufficiently small positive number, ¢; and g3 are some
positive numbers, ¢ is a function of initial conditions
and value f(o).

From the expressions {7) and (8) it is easily obtained
that the filtering errors are the vanishing functions for
any bounded disturbance:

lim e (6) = lim ef(8) = 9)
§—00 §—00
2.8 Frequency equations.
These equations have the view
FO\+ jwi) = (6 + 380N + jwr) =
= (@ +iB)A+jw)’, k=Tn  (10)
where E(s) = ll'.,S"' + -+ + ko, (f(s) = r}n_w"" +
-+ Jls + do are the searched polynomials of

plant model. (Here and further the argument ¢ in
the notations of the FDP estimates and solutions
d;(8),k;(8) (i=0,n—1, j=0,7) is often omitted).

The equations (10) under & = ax, B = (k=T,n
follow from Bezout-Identity

d(s)k(s) — k(s)d(s) = k(s)s" (11)



after dividing the identity by the polynomial d(s) and
a substitution s = s = A 4+ jwi (k: ,n). The
identity (11) has a unique solution

d(s) = d(s) = ", k(s) = k(s), (12)
which is the unique solution of the frequency
equations (10) under dzx = oz, B =8 (k=1,n)
and any positive A and wr (k = 1,n) (Alexandrov,
1989 ).

Let 6* denote an identification time such that the
requirements on identification accuracy (4) are fulfilled.
The time 6 always exists. This follows from the
property (9) and continuous dependence of the
frequency equations solution on small variations of
their coefficients and right parts.

It is further assumed that identification time is given a
priory, however this value (denoted by 9) is examined by
the necessary conditions of identification convergence:

di(8)—d:i(6—T")| < &f, |k;(6)—k;(6—T")| < &f (13)
(i=0,n—1), (j =0,7), under § = § and

max{gly .. -:§n} < 001

(14)
- where § (i = 1,n) are roots of polynomial d(s).

Algorithm 2.1 (the finite-frequency identification):
measure Fourier’s filter outputs for the time moments
§ (it is multiple T*) and & 4+ T*, solve the frequency
equations (10) for these moments and examine the
necessary conditions (13}, (14).

3. PROBLEM STATEMENT

Let the estimates d;(8), £;(8) (i=0,n—1, j=0,7)
be found on the base of algorithm 2.1. The prescribed
time § may occur less than 6.

Problem A (model validation). Find a form of the
test signal u(t) dependent on the plant coefficients
estimates and allowing to ezamine the achievement of
the identification purpose (4) experimentally.

The second problem arises because of the plant input
restriction:
lu(t)] < u

(15)

where u* is a given number.-

In this case the identification time is limited by a value
5 when the test signal (3) reaches the boundary u*.
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From (3) and (15) it follows that

*

6 < ~In

Sy (16)

If the amplitude p is decreased to increase &, then the
time §* may increase. Moreover, it may occur that the
amplitude p under which the inequalities (4) are fulfilled
{such amplitude is denoted by p*) does not exist.

Problem B (identification under the bounded test signal).
Find the ezistence conditions of the value p* and design
the algorithm of this signal amplitude tuning to p*.

4. MODEL VALIDATION

4.1 Approach essence.

Form the searched test signal as a solution of the
following differential equation

gn_lu(ﬂ—l) + .. + gou - rﬂ-—ly(n-l) + N

+ 10y + ln_28®™ D + - + lyai. (17)
Here I; (i=0,n—2) are given numbers; g;,

r; (i =0,n—1) are numbers determined from the

identity R

d(s)g(s) = k(s)r(s) = ¥(s), (18)
where 9(s) is a given polynomial of the degree 2n — 1;
d(s) = 5™ + d(s).

The test signal is

n
a(t) = per S “sindy(t — 1), fo>to+8 (19)
k=1

where 5, A, @ (& =1,n) are given positive numbers
that may coincide with the corresponding parameters
of the signal (3), A > Co, where Cy is an estimate of an
unstability degree 5* of the system (1), (17), Co > §*.
s* = max{51,---,52n-1}, 5 (i =1,2n— 1) are roots of
the following characteristic polynomial of this system

p(s) = d(s)g(s) — k(s)r(s). (20)
The system (1), (17) may be written as ”a plant*
p(s)u = I(s)d(s)i + m(s)r(s)Sf. (21)
The transfer function ”the plant® (21) is
wu(s) = Us)d(s)/(s) (22)

It is obvious that if polynomials d(s) and k{s) tend
to d(s) and k(s) respectively then (s) and w.(s)



tend to 9(s) and d(s)i(s)/4(s). Therefore a plant
model is validated if the differences of the values
wy(3x) (k=1,n) determined experimentally and the
values

wi(8k) = d(E)I(3)/¥(5:) k=Tn,

to be calculated are sufficiently small.

(23)

4.2 Frequency domain parameters of feedback ouiput.

Definition 4.1 A set of 2n numbers

O = Rewu(Sk), 7 =Imwy(5), k=Tn (29)

s called the freqguency domain paremeters of feedback
output. h

The FDP of plant (1) may be calculated using the
numbers (24). In fact, the expressions (20) and (22) give

wyu(s) = m%, where w(s) = %g%, wifs) = b'%%

and therefore

ar = Rew(5;), B =Imw(5), k=T,n, (25)

where ] _
(B + 772) — wi(5i)
we(3k) (O + jve)

w(s) = (26)

The FDP estimates 8;(3) and %:(3), (k=T,n), are
found as Fourier’s filter for ”the plant* (21): in the
expressions (5) y(t), p, wk, A, 6, are replaced by u(t),
P, @k, A, 6 correspondly, where é is a validation time.
Using these estimates the plant coefficients estimates
di(6) and £;(8) (i=0,n—1, j=0,7) are determined
by way of solution of the frequency equations {10) after
the substitution of &, Bk, A and wp by ag, ,ék, A
and &g (& = T,n), where & and §; are calculated by
formulae (25) (26) in which the FDP of feedback #; and
¥ {k =T1,n) are replaced by their estimates.

Assertion 4.1 Ideniification errors saiisfy the equations:
¥ . n-1 )
3 AkE - w(E) ) AdiE =
j=¢ i=0
= (&) [(0 - 6;) +5(v — )] (k=T,n)

where v(5;) Y(5e) (3 )/d(5)I(5k)r(5:), 6%
Rew}(5k), 72 = Imw}(5c), (k=1,n).

(27)

Assertion proof is given in Appendix.

The left parts of the equations {27) and (10) coincide
(accurate up to the notations) and therefore the
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equations (27) have unique solution for identification
errors. It means there exists the tolerances €f and
€1 (k=T n) such that under conditions

|9k"9:|$52} |7k_7;|5511 k=1,_71, (28)

1dentification purpose (4) is achievable.

4.8 Validation algorithm.

The inequalities {28), which is the sufficient conditions
of achieving of the identification purpose, contain the
FDP of feedback but as a matter of fact it is their
estimates ék(ﬁ), #(d) (k= T,7n) that are only known.
That is why the inequalities (28) are replaced by the
following conditions

@) - 831 < b, () -71<el, kE=Tn (29)

A distinction feature of conditions (29) in comparing
with (28) consists in the existence of such correlation
of the filtering errors ef(8), ef(&) and €2(8), e;’(S)
under that the demands (4) are not met but the
inequalities (29) is fulfilled. It may be occurred under a
small time §.

Algorithm 4.1 (model validation): measure Fourier’s
filter outputs §r and 9; at time moments § and
6 + T*, check the following conditions that for the
model validation must be fulfilled: (i) the necessary
conditions (13), (14), for the estimates d;(§) and
Ifj(g) (i=0,n—1, j=0,7); (i) the conditions {29)
under § = ; (iii) the conditions (29) under § = § + 5,
¥> 1

If (i) is violated then go to the beginning of algorithm
increasing 6. If (i) and (iii) are violated or while
fulfilling (41} the conditions (i) are violated then the
plant model is not validated.

5. IDENTIFICATION UNDER THE BOUNDED
TEST SIGNAL

It may be extracted one important case when amplitude
p* in problem B is calculated a priori. If the plant (1)
is stable (the roots of d(s) lie the left half-plane) and
disturbance f(t) does not contain the test frequencies
then the filtering errors tend to zero under A = 0. This
follows from the proof of the expression (8). Under A =
Q the searched amplitude p* <u*/n.

Now consider a general case.
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Assertion 5.1 There always exists an amphiude p*
and boundaries f** and €} of the disturbance and the
tnitial conditions so thai the identification purpose ({)
is achievable under resiriction (15) on the test signal.

Assertion proof is given in Appendix.

If the conditions hold
< (30)

the following converged algorithm solves the identification
problem under an bounded test signal (for simplicity,
the identification time #* is determined from the
necessary conditions (13) (14)).

and g9 < £5.

Algorithm 5.1 (identification with the test signal
amplitude tuning).

Step 1. Apply test signal (3) under p = p) =

7‘ to the plant (1), measure Fourier’s filter outputs
&x(6), Be(8) (k=T,m) for § = vT*, where v =
2,3,...,0% vt = [;—.‘:—] (symbol [%] is the least integer
part of a ratio), solve the frequency equations {10) and
check the conditions (13) (14) foreach v (v = 2,...,v%).

‘Step 2. If the conditions (13) {14) are fulfilled then
identification is ended, if the contrary is the case then

go to step 1 placing p = p{?) = 3(2—1), ets.

If the conditions (30) are violated then the plant (1)
is enclosed by the feedback {17) whose coefficients are
found by means of the following algorithm.

Algorithm 5.2 (determination feedback coefficients):
apply the test signal (3) under p = p{) = % to
the plant {1), measure Fourier’s filter outputs &(6;)
and B(6;), solve the frequency equations (10) and
identity (18), enclose the plant (1) by feedback and
determine the unstability degree Co. If Cg = 0 then the
process is ended, if the contrary is the case then go to
the beginning and place p = p® = p(1)/2, ets.

If algorithm 5.2 is convergence to the estimates C~’o =0
then the plant (1), enclosed by the feedback (17-19),
is identified with a tuning of the amplitude p on the
basis of algorithm 5.1 which is used for ”a plant“ (21).
The estimates &z and S (k=1,7n) in algorithm 5.1
are calculated by formulae (25) (26). If disturbance f(¢)
does not contain the test frequencies then A = 0.

6. EXAMPLE

Consider the completely controllable plant

i+ diy+doy = kra+ kou+ f. (31)

with unknown coefficients. It is known that the
unstability degree estimate of the plant is Co = 4.1
and the boundaries of the disturbance and test signal
are f*=1 u*=25.

Problem 6.1 Find the plant coefficients estimates such
that the identification errors meet the demands

|Adi] <1, |Ak|<1, i=0,T. (32)

Remark 6.1 The true coefficients of the plant (31) do =
—16, dy = 0, kg = —30, k; = 5, the disturbance f(f) =
sin 2.5¢, the initial conditions y(fo) = y(to) = 0, to = 0.
Minimum-phased version of this plant (it is a robot-
cyclist) is described by (Fomin, et al. 1981 ).

The numerical experiments have been performed and
they have been consisted of three groups: (a), (b) and

(c)-
(a). The plant (31) was excited by the test signal

u(t) = pe* **(sin 9t + sin 18¢) (33)

To determine the amplitude p the algorithm 5.2 was
used with polynomial ¥(s) = 5s® + 10052 + 670s + 1500,
and the plant (31) was enclosed under lp = 0 by the
feedback

q18+ gou = my + roy + . (34)

As a result the amplitude p = 0.03 (8, = 2.09s) was
found. The feedback coefficients (providing stability of
the system (31) (34)) obtained under this amplitude are

Jo = 728, n= 5, rp = 461, rn = 116. (35)

(b). The system (31), (34), (35) under Il = 100 was
excited by the test signal #(t) = p(sin9 + sin 18t),
and in accordance with algorithms 5.1 the amplitude
p=1(6=14.66s, T = %)) was found. The plant
coefficients obtained under this amplitude are

do = —16.2, dy = —0.052, ko= —30.3, ky =5. (36)

{c). For the model (31), (36) to validate the plant
was enclosed by feedback (34) with {; = 100 and the
coefficients

go=484, g1 =5, =309, n =767, (37)

obtained from the identity {18) in which the polynomials
d(s), k(s) had the coefficients (36) and ¥(s) was took
from experiment {a), Validation time § was determined
by conditions (29) under e = 0.0302, e = 0.027; ¢] =
0.125, €] = 0.043.

Under § = 14.66 s and § = 1 the following values were
obtained |#; 87} = 0.0034, |8,—05] = 0.0022, |, —7i| =
0.00077, |2 — v3| = 0.0006.



7. CONCLUSION

Algorithm 4.2 of a validation of the plant model
obtained as a result of the finite-frequency identification
is designed. It bases itself upon the assertion 4.1
about a connection between identification errors and
deviations of feedback output FDP that are obtained
experimentally from the numbers #; and 7; that are
calculated.

Two ways of identification for a bounded test signal are
proposed: identification with tuning of signal amplitude
{algorithm 5.1), and identification of a plant enclosed by
the feedback (17)-(19) whose coeflicients are determined
on the bastis of algorithm 5.2.
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APPENDIX

Proof of the assertion 4.1.

Form the transfer functions difference

—'——-l—(-‘fl— 5 s) — AS s
oo L) — ds)els)) (38)

wy(s) — wi(s) =
Taking into account d(s) = d(s) — Ad(s), k(s) = k(s) —
Ak(s) one easily represents

d(s)¥(s)~d(s)p(s) = d(s){[d(s) —Ad(s)lg(s)-
—k(s)—Lk(s)]r(s)} - [d(s)— Ad(s)][d(s)g(s)-  (39)
—,(s)r(s)] = r(s)[d(s)Dk(s)—k(s)Ad(s)]

The equations (27) are obtained after substitution of
expression (39) into the difference (38) under s

5 (k=Tn))

Proof of the asseriton 5.1.

It may show that the function g in the expression (8)
i1s a linear function of the ihitiai conditions ) (to)
(i =0,n—1)) and the value f(to}*and therefore

g2} < vigo + v2f” (40)

where 1 and v, are some positive numbers.

Represent the searched values f** and ¢} as linear
functions of unknown amplitude p*

" =vsp*, eg=vap (41)
Placing (40) in the sum (8) and replacing f* and ¢y by
the expression (41) it easily see that the function v(6)
does not depend on p = p* and that is why for any
v3 and v, the time §* may be found. After placing the
value §* into the inequality (16) a number p* < “Te""‘s'
is determined.



