
REGECTION OF BOUNDED HARMONIC EXTERNAL DISTURBANCES WITH UNKNOUNFREQUENCIES AND AMPLITUDESA. G. Alexandrov and V. N. ChestnovDepartment of Manufacturing Automation, Moscow State Institute of Steel and Alloys(Technological University), Pervomayskaya 7, Elektrostal, Moscow region, 144000, Russia.Phone: (096-57) 4-33-11, Fax: (7-095) 232-93-80, E-mail: alex@misisf.msk.suAbstract: Problem of accurate control of steady-state of the linear time-invariant multivariablesystems subject to bounded harmonic external disturbances of unknoun frequencies and am-plitudes is formulated. The way of its solution on the base of H1 suboptimal control withappropriate choice of weighting matrices is proposed.Keywords: Linear system, H1 suboptimal control, disturbance rejection.1. INTRODUCTIONThe work quality of a real control system is characteri-zed by technical indices: a maximum overshoot, settlingtime, steady-state errors for each controlled variable,stability margins etc. These technical indices checkedby the experiment are a language of task description ona design of any control system.The accurate control of steady-state is a control thatprovides the speci�ed tolerances on the steady-state er-rors of the controlled outputs in the presence of the un-measured external disturbance and measurement noisewith the known boundaries.Note that the modern control theory uses axiomaticindices such a value of a quadratic functional, cha-racteristic polynomial roots and the H1 norm of atransfer function matrix of closed-loop system that areaxioms for LQ-optimization, modal control and H1 op-timal control. These e�ective methods of synthesis maybe used for real control system design if the connectionsbetween the technical and axiomatic indices are estab-lished. The �rst paper devoted by LQ-optimal systemproperties is the investigation [8] where it was shownthat for any linear control system with state feedback
(and, in particular, for a \bad" system in the sense ofthe technical indices) may be found the quadratic func-tional for which this system is optimal. An analogousresults take place for a H1-optimal [9] and l1-optimalcontrol systems [4].The aim of this paper is a investigation of the accu-racy problem of steady-state of H1 suboptimal con-trol. However, a standard H1 suboptimal control [5]deals with �nite energy signals (external disturbanceand measurement noise) only, hence, it has practicallimitation when persistent disturbances are present [10,13].In many control problems there is a requirement to re-ject harmonic disturbances. Some examples where suchharmonic disturbances may arise is in vibrations in ro-tating machinary with an unknown unmeasured angularvelocity [12].In this paper we consider accuracy properties of H1suboptimal system under bounded harmonic distur-bances of unknown frequencies and amplitudes. It issigni�cant in order for the H1 control theory becomesa practicable tool for a control system design-engineer.1



It should be noted that well known results (see, for ex-ample, [6, 12, 16, 17]) for rejection of harmonic dis-turbances are proposed when frequencies of the exter-nal disturbances are known. In this paper, however, wedeals with sinusoids of unknown frequencies. In con-trast to l1-optimal control theory [10, 13] we considersteady-state errors only.The main result of this paper is connection betweensteady-state errors and weighting matrices Riccati equa-tions of H1 suboptimal control. The last is analogousto the results solving well known problem of coe�cientschoice of the optimization functional for LQ problem [1]and generalizes investigations [2].2. PROBLEM STATEMENTConsider the time-invariant system described by the fol-lowing equations_x = Ax+B1w+B2u; z = C1x; y = C2x+ �; (2:1)_xr = Arxr + Bry; u = Crxr +Dry; (2:2)where x(t) 2 Rn is a state vector of the plant (2.1),u(t) 2 Rm is a control, z(t) 2 Rm is a controlled out-put, y(t) 2 Rm2 is a measured output, w(t) 2 R� is anexternal unmeasured disturbance, �(t) 2 Rm2 is a mea-surement noise vector, xr(t) 2 Rnr is a state vector ofthe controller (2.2). The constant matrices A, B1, B2,C1 and C2 are known. The pairs (A;B1) and (A;B2)are stabilizable and the pairs (C1; A) and (C2; A) aredetectable. Ar, Br , Cr, Dr are unknown matrices.The disturbance and noise components are the boundedfunctions that may be represented aswi(t)= pXk=1��s;ki sin!kt+�c;ki cos!kt� i = 1; �; (2:3)�j(t)= lXq=1 ��s;qj sin ~!qt+�c;qj cos ~!qt� j = 1;m2: (2:4)Here the amplitudes �s;ki , �c;ki �i = 1; ��; �k = 1; p�;�s;qj , �c;qj �j = 1;m2�; �q = 1; l� and the frequencies!k �k = 1; p�, ~!q �q = 1; l� are unknown, howeverpXk=1�j�s;ki j2 + j�c;ki j2� � w�2i i = 1; �; (2:5)lXq=1 �j�s;qj j2 + j�c;qj j2� � ��2j j = 1;m2; (2:6)

where p and l are given integers; w�i �i = 1; ��,��j �j = 1;m2� are the given numbers.Determine steady-state errors of the system (2.1), (2.2)as zi;st = limt!1 sup jzi(t)j i = 1;m1 (2:7)and analogous determine steady-state values of the con-trol as ui;st = limt!1 sup jui(t)j i = 1;m: (2:8)Problem of accurate control of steady-state consists in�nding of controller (2.2) such that the system (2.1),(2.2) satis�es the requirements on accuracyzi;st � z�i i = 1;m1; (2:9)where z�i �i = 1;m1� are the speci�ed numbers.3. STEADY-STATE VALUES LEMMALet Tzw(s) be a stable (m1��) transfer function matrixfrom external signal w to output z (� = 0, for simplici-ty). z(s) = Tzw(s)w(s); (3:1)and ~A, B, C are matrices its minimal state space real-ization Tzw(s) = C(sI � ~A)�1B: (3:2)The next bounded real lemma (see, for example, [7,11, 15]) is the direct corollary of the famous so-calledKalman-Yakubovich-Popov lemma: Let Q = QT is anypositive-de�nite matrix and 
 > 0 is a given number,then the frequency inequalityTTzw(�j!)QTzw(j!) � 
2I; ! 2 [0;1) (3:3)holds i� exist positive-de�nite solution P > 0 of thequadratic matrix equation~ATP + P ~A+ 
�2PBBTP = �CTQC: (3:4)If Q = I then aim condition of H1 suboptimal controltheory follows [5] from inequality (3.3).Now, consider physical sense of the frequency inequali-ty (3.3) with respect introducing de�nition (2.7). Sup-pose that external signal w from (3.1) has a view (2.3),(2.5) and consider, for convenience, diagonal weight-ing matrix Q in (3.3): Q = diag[q1; q2; : : : ; qm1 ],qi > 0 �i = 1;m1�:Introduce the vector w� = [w�1; w�2; : : : ; w��]T withcomponents from the right side (2.5), and determine2



the standard Euclidean norm of this vector kw�k =p(w�)Tw�: Then the following result takes place.Lemma 1 (Steady-State Values Lemma). Let thefrequency inequality (3.3) holds. Then steady-state out-puts of the system (3.1) satisfy the following inequalitym1Xi=1 qiz2i;st � 
2pkw�k2: (3:5)Proof: Steady-state outputs of the system (3.1) aredescribed aslimt!1 zi(t)= pXk=1ai(!k) sin(!kt+�i(!k)) i = 1;m1;(3:6)where ai(!k) � 0 and �i(!k) �i = 1;m1; k = 1; p� areamplitudes and phases of the forced oscillations.It is obviously thatzi;st � pXk=1 ai(!k) i = 1;m1: (3:7)Using the Coushy-Bunyakovsky inequality [3] pXk=1 ai(!k)!2 � p pXk=1a2i (!k) (3:8)it is easily obtained on the base of (3.7) thatm1Xi=1 qiz2i;st � p pXk=1 m1Xi=1 qia2i (!k): (3:9)On the other hand, expression (3.1) and inequality (3.3)givem1Xi=1 qia2i (!k) = �(k)T� TTzw(�j!k)QTzw(j!k)�(k)+ �� 
2�(k)T� �(k)+ k = 1; p; (3:10)where �(k)+ = [�(k)1 ej 1k ; �(k)2 ej 2k ; : : : ; �(k)� ej �k ]T ,�(k)� = [�(k)1 e�j 1k ; �(k)2 e�j 2k ; : : : ; �(k)� e�j �k ]T ,�(k)i = qj�s;ki j2 + j�c;ki j2 �i = 1; ��; �k = 1; p�; ik = arcsin �c;ki =�(k)i �i = 1; ��; �k = 1; p�:Lemma 1 follows from inequalities (3.9), (3.10) and(2.5).Note that the estimation (3.5) is achievable.

4. STATE FEEDBACKFirst consider case when the state vector of the plant(2.1) is available for feedback and the measurement noiseis absent. It means thaty = x; C2 = I; � = 0: (4:1)Introduce new controlled outputz = C1x+D12u;CT1 = [CT1 Q1=2; 0]; DT12 = [0; R1=2]; (4:2)where matrices C1 and D12 satisfy the following pro-perty DT12[C1; D12] = [0; R]; (4:3)and Q = QT , R = RT are any positive-de�nite matrices.Consider the next problem: �nd the state feedback con-trol law u = Drx; (4:4)such that the following condition holdsTTzw(�j!)Tzw(j!) � 
2I; ! 2 [0;1) (4:5)where Tzw(s) = (C1+D12Dr)(sI�A�B2Dr)�1B1 and
 > 0 is a given number.It is well known standard H1 suboptimal control prob-lem [5]. The solution this problem on the base thebounded real lemma was derived, for example, in [14].The control law has a viewu = Drx; Dr = �R�1BT2 P; (4:6)where P = PT � 0 satis�ed the algebraic Riccati equa-tion (ARE)ATP+PA�PB2R�1BT2 P+ 
�2PB1BT1 P =�CT1 QC1;(4:7)which di�ers from usual ARE H1 suboptimal controltheory [5] by weighting matrices Q 6= I and R 6= I.These weighting matrices play important role for mainresults of this paper. It will be shown in the sequel thataccuracy of closed-loop system (2.1) ,(4.6) is depend onthe choice of matrices Q and R.In linear-quadratic optimal control theory so-called op-timal frequency condition (circle condition [8]) for trans-fer matrix of the open-loop system plays an importantrole [1, 8].An analogous condition may be derived in H1 subopti-mal control theory, which is called 
-optimal condition3



in the frequency domain. The main di�erence of thiscondition from circle condition consists in that the for-mer includes transfer matrices of the closed-loop system(2.1), (4.6).To obtain 
-optimal condition denote �A = A+B2Dr anddetermine the following closed-loop transfer matricesTzw(s) = C1(sI � �A)�1B1; (4:8)Tuw(s) = Dr(sI � �A)�1B1; (4:9)Tw(s) = 
�2B1TP (sI � �A)�1B1; (4:10)which connect external disturbance w with initial con-trolled output z, control u and vector of the \worst"disturbance in the L2[0;1) sense [5].Theorem 1. The transfer matrices (4.8)-(4.10) ofclosed-loop suboptimal system (2.1), (4.6) satisfy the fol-lowing identity (
- optimal condition in the frequencydomain)[I�Tw(�j!)]T 
2[I�Tw(j!)]=
2I�TTzw(�j!)QTzw (j!)��TTuw(�j!)RTuw(j!); ! 2 [0;1): (4:11)Proof: Using a closed-loop system matrix �A = A +B2Dr the equation (4.7) is represented as�ATP+P �A+
�2PB1BT1 P+PB2R�1BT2 P = �CT1 QC1:From the last equation after adding and subtractionsP and multiplication of the obtained expression byBT1 (�sI � �AT )�1 and (sI � �A)�1B1 from the left andfrom the right respectively the required result follows ifconnections (4.6),(4.8)-(4.10) take into account.Corollary 1. The transfer matrices (4.8), (4.9) of theclosed-loop H1 suboptimal system (2.1), (4.6) satisfythe following frequency inequalityT Tzw(�j!)QTzw (j!) + TTuw(�j!)RTuw(jw) � 
2I;! 2 [0;1) (4:12)Proof: It is obvious since the left part of identity (4.11)is a positive semi-de�nite matrix, hence, the right partgives the required result.Note that the inequality (4.12) is merely another formof the aim condition (4.5).Let the weighting matrices Q and R from ARE (4.7) beQ = diag[q1; q2; : : : ; qm1 ]; qi > 0 i = 1;m1; (4:13)

R = diag[r1; r2; : : : ; rm]; ri > 0 i = 1;m: (4:14)Then the following theorem takes place.Theorem 2. The steady-state errors and steady-statevalues of the control components of the closed-loop H1suboptimal system (2.1), (4.6) satisfy the inequalitym1Xi=1 qiz2i;st + mXi=1 riu2i;st � 
2pjjw�jj2: (4:15)Proof: This result is the direct corollary of the lemma1 and follows from frequency inequality (4.12).Note that the estimation (4.15) is achievable and maybe used in order to choice weighting coe�cients of thematrices Q and R such that controller (4.6) provides aaccuracy requirement (2.9). In particular, let weightingcoe�cients beqi� pkw�k2(z�i )2 i = 1;m1; ri>0 i = 1;m; (4:16)and denote 
� a minimal value 
 for that a solutionP � 0 of ARE (4.7) exists.Corollary 2. Let the weighting matrices (4.13), (4.14)satisfy the inequalities (4.16). Then steady-state errorsof the closed-loop H1 suboptimal system (2.1), (4.6)satisfy the following inequalitym1Xi=1 �zi;stz�i �2 < 
�2: (4:17)Proof: This result is the direct corollary of the inequ-alities (4.15) and (4.16).So, from (4.17) we now conclude that the steady-stateerrors of the closed-loop system (2.1), (4.6) satisfy thefollowing inequalitieszi;st < 
�z�i �i = 1;m1�: (4:18)Note, that if B1 = B2 then an ARE (4.7) for all 
2 >ri = 1 �i = 1;m� is the usual ARE of the LQ optimalcontrol theory and its solution P � 0 exist. In this case
� ! 1, hence, inequalities (2.9) are ful�lled.5. OUTPUT FEEDBACKLet the measured output of the plant (2.1) bey = C2x+ �: (5:1)4



Introduce the vector �w = [wT ; �T ]T and �nd the con-troller (2.2) such that the following aim condition holdsTT�z �w(�j!)T�z �w(j!) � 
2I; ! 2 [0;1); (5:2)where T�z �w(s) is the closed-loop transfer matrix of thesystem (2.1), (2.2) from signal �w to controlled output �z(4.2), 
 is a given number.It is well known standard H1 suboptimal output feed-back problem [5]. The solution of this problem on thebase the bounded real lemma was derived in paper [14].The control law is described byu = �R�1BT2 Pxr; (5:3)where P = PT � 0 is the positive semi-de�nite solutionARE (4.7), xr is the state vector of the observer_xr = Axr + B2u+B1wr +Kf (y � C2xr); (5:4)in which wr = 
�2BT1 Pxr; (5:5)is the estimation of the disturbance and Kf is the ob-server gain matrixKf = (I � 
�2Y P )�1Y CT2 ; (5:6)where Y � 0 is a positive semi-de�nite solution ARE:AY +Y AT+
�2Y CT1 QC1Y�Y CT2 C2Y =�B1BT1 ; (5:7)and he following condition must be ful�lled�max(Y P ) < 
2; (5:8)where �max(M ) is a maximum eigenvalue of a matrixM .Write the transfer matrix T�z �w(s) in view (4.2) asT�z �w(s) = � Q 12Tz �w(s)R 12Tu �w(s) � (5:9)where Tz �w(s) and Tu �w(s) are matrices of the closed-loopsystem (2.1), (5.3)-(5.7) from �w to z and from �w to uaccordingly.Then frequency inequality (5.2) may be represented asT Tz �w(�j!)QTz �w(j!) + TTu �w(�j!)RTu �w(j!) � 
2I! 2 [0;1) (5:10)Let weighting matrices Q and R have a diagonal form(4.13), (4.14).

Theorem 3. The steady-state errors and steady-statevalues of the control components of the closed-loop H1suboptimal system (2.1), (5.3)-(5.7) satisfy the followinginequalitym1Xi=1 qiz2i;st + mXi=1 riu2i;st � 
2(p + l)k �w�k2; (5:11)where k �w�k is a Euclidean norm of the vector �w� =[w�1; w�2; : : : ; w��; ��1 ; : : : ; ��m2 ]T whose components aretook from the right parts inequalities (2.5), (2.6).Proof: The result follows from frequency inequality(5.10) after application of lemma 1.Note, that if diagonal elements of the weighting matricesQ and R satisfy the following conditionsqi � (p + l)k �w�k2(z�i )2 i = 1;m1;ri > 0 i = 1;m; (5:12)then next result solving the problem of accurate controlis true.Corollary 3. Let the weighting matrices (4.13), (4.14)satisfy the inequalities (5.12). Then steady-state errorsof the closed-loop H1 suboptimal system (2.1), (5.3)-(5.7) satisfy inequality (4.17).Proof: This result follows from inequalities (5.11) and(5.12).So, the steady-state errors of the closed-loop system(2.1), (5.3)-(5.7), (5.12) satisfy inequality (4.18) , where
� is a minimal value 
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