Линейные системы

© 2017 г. А.Г. АЛЕКСАНДРОВ, д-р физ.-мат. наук

(Институт проблем управления им. В.А. Трапезникова РАН, Москва)

СИНТЕЗ РЕГУЛЯТОРОВ ПО ПОКАЗАТЕЛЯМ ТОЧНОСТИ И БЫСТРОДЕЙСТВИЮ. II. НЕМИНИМАЛЬНО-ФАЗОВЫЕ ОБЪЕКТЫ

Предлагается метод синтеза регуляторов одномерных, неминимальнофазовых объектов при неизвестных, ограниченных внешних возмущениях. Метод основан на определении параметров тождества Безу. Находятся достижимые показатели точности и быстродействия.

Ключевые слова: синтез регуляторов, неминимально-фазовые объекты, точность регулирования, запасы устойчивости.

1. Введение

Синтез регуляторов по показателям точности, времени регулирования, перерегулированию является одной из основных задач автоматического управления. Эффективным средством синтеза по этим показателям служит метод логарифмических амплитудно-частотных характеристик (метод ЛАЧХ) [1, 2]. Он является эвристическим графо-аналитическим методом, и его трудно автоматизировать с помощью вычислительной техники. В связи с этим разрабатываются аналитические методы синтеза по этим показателям.

Одно из направлений основано на линейно-квадратичной оптимизации [3, 4]. Большое число работ связано с синтезом ПИ- и ПИД-регуляторов. Невысокий порядок уравнений объекта позволяет найти явную связь коэффициентов таких регуляторов со временами регулирования и перерегулирования, запасами устойчивости и т.д. В [5] приведены несколько десятков сотен соотношений, выражающих эти связи. В [6] предложен синтез регуляторов для минимально-фазовых объектов, обеспечивающий заданные требования к точности и быстродействию при неизвестных ограниченных внешних возмущениях. Он основан на связи корней характеристического полинома системы с этими показателями. Задаваясь этими корнями, обеспечиваются заданные требования, если полином регулятора находится из тождества Безу, содержащего полином с определенными корнями.

Аналогичный подход используется в настоящей статье при синтезе регуляторов неминимально-фазового объекта. Однако для таких объектов указанная связь существенно усложняется. Более того, известно, что для этих объектов может не существовать регулятора, обеспечивающего заданные требования к точности и быстродействию.

В связи с этим необходимо найти предельно достижимые значения показателей. Предельно достижимую точность можно найти, используя [7, 8]. Так, в [7] эта точность получается при одночастотном гармоническом внешнем возмущении с неизвестной частотой, а в [8] – для любого ограниченного внешнего возмущения.

2. Постановка задачи

Рассмотрим асимптотически устойчивую систему управления, описываемую уравнениями

(2.1)
$$y^{(n)} + d_{n-1}y^{(n-1)} + \ldots + d_1\dot{y} + d_0y = k_m u^{(m)} + \ldots + k_1\dot{u} + k_0u + c_p f^{(p)} + \ldots + c_0 f, \quad m < n, \quad p < n,$$

(2.2)
$$g_{n_c}u^{(n_c)} + \ldots + f_1\dot{u} + g_0u = r_{m_c}y^{(m_c)} + \ldots + r_1\dot{y} + r_0y, \quad n_c \ge m_c,$$

где y(t) – измеряемый выход объекта (2.1), являющийся регулируемой переменной, u(t) – управление, формируемое регулятором (2.2), f(t) – неизвестное, ограниченное известным числом f^* , внешнее возмущение, которое представляется полигармонической функцией

(2.3)
$$f(t) = \sum_{i=1}^{N} f_i \sin(\omega_i t + \varphi_i)$$

с неизвестными частотами ω_i и фазами φ_i $(i = \overline{1, N})$, а ее неизвестные амплитуды таковы, что

$$\sum_{i=1}^{N} |f_i| \leqslant f^*.$$

Если f(t) – кусочно-непрерывная функция, то при $N \to \infty$ выражение (2.3) – это ее разложение в ряд Фурье.

Задача 1. Найти для известного и полностью управляемого объекта (2.1) регулятор (2.2), при котором выполняются требования к точности

$$(2.4) |y(t)| \leqslant y^*, \quad t \ge t_{\text{per}},$$

быстродействию

(2.5)
$$t_{\rm per} \leqslant t_{\rm per}^*,$$

и к запасам устойчивости

(2.6) $r_a \ge r_a^*,$

где y^* , $t^*_{\rm per}$, r^*_a – заданные числа.

Радиус запасов устойчивост
и r_a связан с запасами по фазе ($\varphi_{\tt 3})$ и модулю
 (L)соотношениями

$$\varphi_3 = 2 \arccos \sqrt{1 - \frac{r_a^2}{4}}, \quad L = \min \left[1 + r_a, \frac{1}{1 - r_a} \right].$$

В частности, при $r_a = 0.75$, $\varphi_3 = 42^\circ$, L = 1.75. Радиус запасов устойчивости может быть найден экспериментально без размыкания системы.

Требуемые точность и быстродействие должны удовлетворять условиям

$$y^* \ge y^{**}, \quad t^*_{\mathrm{per}} \ge t^{**}_{\mathrm{per}},$$

в которых числа y^{**} и t_{per}^{**} – достижимые точность и быстродействие. Эти числа неизвестны и поэтому возникает следующая задача.

Задача 2. Найти для заданного объекта достижимые значения точности и быстродействия.

3. Существо подхода

Преобразуя уравнения (2.1), (2.2) по Лапласу при нулевых начальных условиях, запишем:

(3.1)
$$d(s)y = k(s)u + c(s)f,$$

$$(3.2) g(s)u = r(s)y,$$

$$d(s) = \sum_{i=0}^{n} d_i s^i, \quad k(s) = \sum_{i=0}^{m} k_i s^i, \quad g(s) = \sum_{i=0}^{n_c} g_i s^i,$$
$$r(s) = \sum_{i=0}^{m_c} r_i s^i, \quad c(s) = \sum_{i=0}^{p} c_i s^i.$$

Представим полином k(s) как

$$k(s) = k_1(s)k_2(s),$$

где $k_1(s)$ – полином степени m_1 , корни которого имеют отрицательные вещественные части, а полином $k_2(s)$ – полином степени m_2 ($m_1 + m_2 = m$), корни которого имеют неотрицательные вещественные части.

Объект (3.1) – неминимально-фазовый, если $m_2 \neq 0$ ($m_2 \leq m$). Регулятор (3.2) будем находить из тождества Безу

(3.3)
$$d(s)g(s) - k(s)r(s) = \psi(s),$$

где $\psi(s)$ – модальный полином, корни которого имеют отрицательные вещественные части.

В левой части (3.3) – характеристический полином системы (3.1), (3.2), а справа – желаемый характеристический полином. Сравнивая коэффициенты при одинаковых степенях *s*, получим систему линейных алгебраических

уравнений для нахождения коэффициентов полинов g(s) и r(s) регулятора, обеспечивающих желаемый характеристический полином системы (3.1), (3.2).

Примем следующую структуру модального полинома:

(3.4)
$$\psi(s) = k_1(s)\varepsilon(s)\delta_k(s)\delta(s),$$

где $\delta_k(s) = k_2(-s)$, полином реализуемости $\varepsilon(s)$ и базовый полином $\delta(s)$ имеют вид:

(3.5)
$$\varepsilon(s) = \prod_{i=1}^{n-m} \left(\frac{\nu_i}{s_{\delta}}s+1\right), \quad s_{\delta} = \max\left[s_{\delta,1}, \dots, s_{\delta,n}\right],$$
$$\delta(s) = \prod_{i=1}^n \left(s+s_{\delta,i}\right),$$

где $s_{\delta,i}$ $(i = \overline{1,n})$ и ν_i $(i = \overline{1,n-m})$ – заданные положительные числа.

Искомый полином

$$g(s) = k_1(s)g_{\varepsilon}(s)g_k(s)$$

содержит сомножители следующих степеней

$$\deg g_{\varepsilon}(s) = \deg \varepsilon(s), \quad \deg g_k(s) = \deg k_2(s).$$

Сокращая тождество Безу (3.3) на полином $k_1(s)$, запишем его как

(3.6)
$$d(s)g_{\varepsilon}(s)g_k(s) - k_2(s)r(s) = \varepsilon(s)\delta_k(s)\delta(s).$$

Обозначим $\tilde{d}(s) = d(s)g_k(s), \ \tilde{r} = k_2(s)r(s), \ \tilde{\delta}(s) = \delta_k(s)\delta(s)$ и представим это тождество в виде

$$\tilde{d}(s)g_{\varepsilon}(s) - \tilde{r}(s) = \tilde{\delta}(s)\varepsilon(s).$$

Нетрудно видеть, что с точностью до обозначений это тождество совпадает с соответствующим тождеством [6], поэтому при достаточно малых коэффициентах полинома $\varepsilon(s)$ (малых числах ν_i , $i = \overline{1, n - m}$) будет справедливо свойство 1.

Свойство 1. Коэффициенты полиномов $g_{\varepsilon}(s)$ и $\tilde{r}(s)$ представим в виде:

$$g_{\varepsilon,i} = \varepsilon_i + 0_{1,i}(\nu), \quad i = \overline{0, n-m}, \quad r_j = \tilde{r}_j + 0_{2,j}(\nu), \quad j = \overline{0, n+m_2-1},$$

где $0_{1,i}(\nu)$ и $0_{2,j}(\nu)$ – функции, исчезающие с вектором $\nu = [\nu_1, \dots, \nu_{n-m}]$:

$$\lim_{\nu \to 0} 0_{1,i}(\nu) = 0, \quad \lim_{\nu \to 0} 0_{2,j}(\nu) = 0.$$

В связи со свойством 1 далее будем полагать для простоты

(3.7)
$$g_{\varepsilon}(s) = \varepsilon(s).$$

Существо подхода к обеспечению требований к системе основано на связи корней модального полинома, полинома объекта и знаменателя передаточной функции регулятора с показателями точности, быстродействия и грубости. Эти связи, аналогичные приведенным в [6], имеют при $c(s) = c_0$ и условии (3.7) вид:

(3.8)
$$\sup_{0 \leqslant \omega < \infty} |t_{yf}(j\omega)| = \sup_{0 \leqslant \omega < \infty} \frac{|g_k(j\omega)| |c_0|}{|\delta_k(j\omega)\delta(j\omega)|} \leqslant \frac{y^*}{f^*},$$

(3.9)
$$s_{\delta,i} \ge \frac{\beta}{t_{\text{per}}^*}, \quad i = \overline{1, n}, \quad \beta = 3,$$

(3.10)
$$r_a = \inf_{0 \leqslant \omega < \infty} \frac{|\delta_k(j\omega)\delta(j\omega)|}{|g_k(j\omega)d(j\omega)|} \ge r_a^*.$$

В случае минимально-фазового объекта полиномы $g_k(s)$ и $\delta_k(s)$ в неравенствах (3.8) и (3.10) совпадают, поэтому для выполнения этих неравенств корни базового полинома определяются [6] как

$$(3.11) s_{\delta,i} = |s_{d,i}| q_t, \quad i = \overline{1,n}, \quad q_t > 1,$$

(3.12)
$$\prod_{i=1}^{n} s_{\delta,i} \leqslant \frac{f^*}{y^*}.$$

Для неминимально-фазового объекта полином $g_k(s)$ сложным образом зависит от корней полиномов $\delta_k(s)$, $\delta(s)$, d(s) и теперь задача состоит в определении корней полиномов $\delta_k(s)$ и $\delta(s)$ так, чтобы выполнялись неравенства (3.8)–(3.10).

4. Зависимость показателей системы от корней полинома $k_2(s)$

4.1. Большие корни

Упорядочим модули корней объекта и базового полинома:

$$|s_{d,1}| \leq |s_{d,2}| \leq \ldots \leq |s_{d,n}|, \quad s_{\delta,1} \leq s_{\delta,2} \leq \ldots \leq s_{\delta,n}, \quad s_1 \leq s_2 \leq \ldots \leq s_{m_2},$$

где $s_i, i = \overline{1, m_2}, -$ корни полинома $k_2(s)$.

Ограничиваясь для простоты вещественными корнями полинома $k_2(s)$, исследуем полином $g_k(s)$ при больших корнях полинома $k_2(s)$ по сравнению с корнями полинома d(s):

(4.1)
$$s_i > |s_{d,n}| \theta_d, \quad i = \overline{1, m_2},$$

где θ_d – достаточно большое положительное число.

Выберем корни полинома $\delta(s)$ так, чтобы выполнялось аналогичное условие

(4.2)
$$s_i > s_{\delta,n}\theta_{\delta}, \quad i = \overline{1, m_2}$$

7

Утверждение 1. Если для объекта управления выполняются неравенства (4.1), а модули корней модального полинома выбраны из условия (4.2), то при достаточно больших значениях чисел θ_d и θ_δ полином регулятора

(4.3)
$$g_k(s) = \delta_k(s) + 0(s, \theta_d, \theta_\delta),$$

где полином $0(s, \theta_d, \theta_\delta)$ содержит коэффициенты, исчезающие вместе с ростом θ_d и θ_δ :

$$\lim_{\theta_d, \theta_\delta \to \infty} 0(s, \theta_d, \theta_\delta) = 0.$$

Доказательство. Рассмотрим соотношения

$$\frac{\delta(s_i)}{d(s_i)} = \frac{\prod_{p=1}^n (s_i + s_{\delta,p})}{\prod_{p=1}^n (s_i + s_{d,p})} = \frac{\prod_{p=1}^n \left(1 + \frac{s_{\delta,p}}{s_i}\right) \prod_{i=1}^n s_i^n}{\prod_{p=1}^n \left(1 + \frac{s_{d,p}}{s_i}\right) \prod_{i=1}^n s_i^n}, \quad i = \overline{1, m_2}.$$

Из неравенств (4.1) и (4.2) получим соотношения:

$$\frac{s_{\delta,p}}{s_i} < \frac{1}{\theta_{\delta}}, \quad \frac{|s_{d,p}|}{s_i} < \frac{1}{\theta_d}, \quad p = \overline{1,n}, \quad i = \overline{1,m_2}.$$

Из них следует, что

(4.4)
$$\frac{\delta(s_i)}{d(s_i)} = 1 + 0_i(\theta_d, \theta_\delta), \quad i = \overline{1, m_2}.$$

где функции $0_i(\theta_d, \theta_\delta)$ обладают свойством $\lim_{\theta_d, \theta_\delta \to \infty} 0_i(\theta_d, \theta_\delta) = 0, \ i = \overline{1, m_2}.$

Запишем тождество (3.6) с учетом соотношений (3.7) и (4.4), пренебрегая в нем исчезающими функциями, в виде

$$\sum_{j=0}^{m_2} (s_i)^j g_{k,j} = \delta_k(s_i), \quad i = \overline{1, m_2}.$$

Из этих уравнений следует уравнение (4.3).

Таким образом, при больших корнях полинома $k_2(s)$ возникает близость к случаю минимально-фазового объекта и определение корней базового полинома, используя соотношения (3.9), (3.11) и (3.12), приводит к выполнению требований (2.4)–(2.6).

4.2. Малые корни

Исследуем полином g(s) при малых корнях полинома $k_2(s)$ по сравнению с корнями d(s):

(4.5)
$$s_i \leqslant \frac{|s_{d,1}|}{\underline{\theta}_d}, \quad i = \overline{1, m_2},$$

где $\underline{\theta}_d$ – достаточно большое положительное число.

8

Корни базового полинома выберем как

(4.6)
$$s_i \leqslant \frac{s_{\delta,1}}{\underline{\theta}_{\delta}}, \quad i = \overline{1, m_2},$$

где $\underline{\theta}_{\delta}$ – достаточно большое положительное число.

Утверждение 2. Если корни полинома $k_2(s)$ удовлетворяют неравенствам (4.5) и (4.6), то при достаточно больших числах $\underline{\theta}_d$ и $\underline{\theta}_{\delta}$ полином регулятора имеет вид

(4.7)
$$g_k(s) = \frac{\delta_0}{d_0} \delta_k(s) + 0 \left(s, \underline{\theta}_d, \underline{\theta}_\delta\right),$$

где полином $0(s, \underline{\theta}_d, \underline{\theta}_\delta)$ содержит коэффициенты, исчезающие вместе с ростом $\underline{\theta}_d$ и $\underline{\theta}_\delta$.

Доказательство. Рассмотрим соотношения

$$\frac{\delta(s_i)}{d(s_i)} = \frac{\prod_{p=1}^n (s_i + s_{\delta,p})}{\prod_{p=1}^n (s_i + s_{d,p})} = \frac{\prod_{p=1}^n s_{\delta,p} \left(1 + \frac{s_i}{s_{\delta,p}}\right)}{\prod_{p=1}^n s_{d,p} \left(1 + \frac{s_i}{s_{d,p}}\right)} = \frac{\delta_0}{d_0} \left[1 + \underline{0}_i \left(\underline{\theta}_d, \underline{\theta}_\delta\right)\right], \quad i = \overline{1, m_2},$$

где $\underline{0}_i (\underline{\theta}_d, \underline{\theta}_\delta)$ – функция, исчезающая при росте чисел $\underline{\theta}_d$ и $\underline{\theta}_\delta$: Эти соотношения следуют из неравенств:

$$\frac{s_i}{s_{d,p}} < \frac{1}{\underline{\theta}_d}, \quad \frac{s_i}{s_{\delta,p}} < \frac{1}{\underline{\theta}_\delta}, \quad i = \overline{1, m_2}, \quad p = \overline{1, n_2}$$

Из тождества (3.6) получим, что

(4.8)
$$\sum_{j=0}^{m_2} g_{k,j} s_i^j = \frac{\delta_0}{d_0} \sum_{j=0}^{m_2} \delta_j s_i^j, \quad i = \overline{1, m_2}.$$

Из равенств (4.8) следует уравнение (4.7).

Передаточная функция в соотношениях (3.8), связывающая выход системы с внешним возмущением, записывается теперь как

$$t_{yf}(s) = \frac{c_0 \delta_0}{\delta(s) d_0}.$$

Эта функция при s = 0 (когда она определяет выход системы при ступенчатом внешнем возмущении) принимает вид

$$t_{yf}(0) = \frac{c_0}{d_0}.$$

Это выражение означает, что регулятор не повышает точности для асимптотически устойчивых объектов.

4.3. Процедура синтеза

Предлагается итерационная процедура синтеза, в первых операциях которой определяются достижимые значения точности и быстродействия.

Процедура.

Операция 1. Определим корни базового полинома по требуемому быстродействию

(4.9)
$$s_{\delta,i} = \left(\frac{\beta}{t_{\text{per }}^* q_t}\right) \alpha^i, \quad i = \overline{1, n}, \quad q_t > 1,$$

где α – положительное число, вводимое для того, чтобы корни базового полинома не были кратными.

Наряду с определением $\delta_k(s) = k_2(-s)$ иногда удобно определять корни $s_{\delta_k,i}, i = \overline{1, m}$, полинома $\delta_k(s)$, выбирая аналогично выражению (4.9)

$$s_{\delta_k,i} = \left(\frac{\beta}{t_{\text{per}}^* q_t}\right) \alpha^i, \quad i = \overline{1, m_2}, \quad q_t > 1.$$

Если $s_{\delta,i} < |s_{d,i}|, \, i = \overline{1, n_1}, \, n_1 < n$, то полагаем

$$s_{\delta,i} = s_{d,i}, \quad i = \overline{1, n_1}.$$

O перация 2. Найдем полином $g_k(s)$, решая тождество (3.6) при $\varepsilon(s) = 1$, и определим радиус запасов устойчивости

$$r_a = \inf_{0 \leqslant \omega < \infty} \frac{|\delta_k(j\omega) \, \delta(j\omega)|}{|g_k(j\omega) \, d(j\omega)|}.$$

Если условие грубости $r_a > r_a^*$ выполняется, то перейти к операции 3. В противном случае вернуться к операции 1, увеличивая число q_t , и так до тех пор, пока при $q_t = q_t^*$ не выполнится условие грубости. Тогда достижимое быстродействие

$$t_{\mathrm{per}}^{**} = t_{\mathrm{per}}^* q_{t^*}.$$

Операция 3. Проверить выполнение требований к точности (3.8). Если оно не выполняется, то формировать корни базового полинома

$$s_{\delta,i} = |s_{d,i}| q_{t^*} q_y, \quad i = \overline{1, n}, \quad q_y > 1.$$

Решая тождество Безу при $\varepsilon(s) = 1$, получить полином $g_k(s)$, проверить выполнение требования (3.8) и увеличить число q_y и продолжать до тех пор, пока это тождество выполнится при сохранении запасов устойчивости.

Операция 4. Решить тождество Безу (3.3) с модальным полиномом (3.4) и сформировать искомый регулятор

$$k_1(s)g_k(s)g_\varepsilon(s)u = r(s)y.$$

5. Инерционный регулятор

5.1. Структура тождества Безу для асимптотически устойчивого объекта

Если объект (3.1) асимптотически устойчив, то можно увеличить точность в диапазоне низких частот внешнего возмущения и сохранить грубость системы, используя инерционный регулятор, предложенный в [3].

Для этого сформируем "объект", заменив в нем полином d(s) на полином $d(s)\rho(s)$, где полином $\rho(s)$ содержит достаточно большую постоянную времени, которая после синтеза переносится в регулятор. Для простоты полагаем

$$m_2 = m \quad (k_2(s) = k(s)).$$

Тождество Безу (3.6) с базовым полиномом $\delta(s)=d(s)$ теперь принимает вид

(5.1)
$$d(s)\rho(s)g_{\varepsilon}(s)g_{k}(s) - k(s)r(s) = \varepsilon(s)\delta_{k}(s)\delta_{\rho}(s)d(s),$$

где

$$\rho(s) = \sum_{i=0}^{n_2} \rho_i s^i, \quad \delta_{\rho}(s) = \sum_{i=0}^{n_2} \delta_{\rho,i} s^i, \quad n_2 > m, \quad \delta_k(s) = k(-s).$$

Примем следующие структуры этих полиномов:

(5.2)
$$\rho(s) = k(-s)(\rho_1 s + 1), \quad \rho_1 > 0,$$

(5.3)
$$\delta_{\rho}(s) = \rho(s) + \mu k(s), \quad \mu > 0.$$

Числа ρ_1 и μ находятся далее из условий грубости и точности системы. Степень искомого полинома r(s)

$$\deg [r(s)] = n + n_2 - 1.$$

Отнесем введенный полином ρ к регулятору, и тогда он принимает вид

(5.4)
$$\rho(s)g_{\varepsilon}(s)g_k(s)u = r(s)y,$$

где степень полинома $g_{\varepsilon}(s)$:

$$\deg \left[g_{\varepsilon}(s)\right] = \deg \left[\varepsilon(s)\right] = n - m - 1.$$

5.2. Свойства решений тождества Безу для объектов при m = n - 1

Нетрудно видеть, что регулятор (5.4) реализуем, когда полином реализуемости $\varepsilon(s) = 1$ (и, следовательно, $g_{\varepsilon}(s) = 1$), если объект имеет степень m = n - 1.

Тождество (5.1) принимает вид

(5.5)
$$d(s)\rho(s)g_k(s) - k(s)r(s) = \delta_k(s)\delta_\rho(s)d(s).$$

11

Cвойство 2. Искомый полином $g_k(s)$ регулятора имеет вид

(5.6)
$$g_k(s) = \delta_k(s).$$

Действительно, из тождества (5.5) при $s = s_i$ получим

(5.7)
$$g_k(s_i) = \frac{\delta_k(s_i)\delta_\rho(s_i)}{\rho(s_i)}, \quad i = \overline{1, m}$$

Из выражения (5.3) следует, что

$$\delta_{\rho}(s_i) = \rho(s_i), \quad i = \overline{1, m}.$$

Тогда из равенств (5.7) получим соотношения

$$g_k(s_i) = \delta_k(s_i), \quad i = \overline{1, m},$$

которые дают свойство (5.6).

5.3. Определение чисел μ и ρ_1

Определим сначала числа μ и ρ_1 из условия отрицательности вещественных частей корней полинома $\delta_{\rho}(s)$.

Упорядочим постоянные времени полинома k(s):

$$k(s) = k_0 \prod_{i=1}^{m} (-T_i s + 1), \quad T_i > 0, \quad i = \overline{1, m}, \quad k_0 > 0,$$

как

$$T_1 > T_2 > \ldots > T_m$$

и введем параметр θ , который принимает значения $\theta = \overline{5, 10}$.

Если T_2, \ldots, T_m достаточно малы по сравнению с T_1 , то $\theta = 1$.

Утверждение 3. Корни полинома $\delta_{\rho}(s)$ имеют отрицательные вещественные части, если

(5.8)
$$\mu = \frac{\sqrt{\rho_1^2 + T_1^2 \theta^2}}{T_1 \theta}.$$

Доказательство. Для доказательства используем критерий Найквиста. В связи с этим рассмотрим амплитудно-частотную $a(\omega)$ и фазочастотную $\varphi(\omega)$ характеристики, соответствующие передаточной функции $w_{\rho}(s)$, определяемой из соотношения

$$\frac{\delta_{\rho}(s)}{\rho(s)} = 1 + \mathbf{w}_{\rho}(s),$$

в котором, учитывая выражения (5.2), (5.3),

$$w_{\rho}(s) = \mu \frac{k(s)}{k(-s)(\rho_1 s + 1)}.$$

Указанные характеристики имеют вид:

(5.9)
$$a(\omega) = \frac{\mu}{\sqrt{\rho_1^2 \omega^2 + 1}}, \quad 0 \le \omega < \infty,$$
$$\varphi(\omega) = -\operatorname{arctg} \rho_1 \omega - 2\sum_{i=1}^m \operatorname{arctg} T_i \omega, \quad 0 \le \omega < \infty.$$

Частота среза системы находится из (5.9) как

(5.10)
$$\omega_{\rm cp}^2 = \frac{\mu^2 - 1}{\rho_1^2}.$$

Определим числа μ и ρ_1 , чтобы частота среза системы находилась существенно левее частоты, соответствующей наибольшей постоянной времени полинома k(s):

$$\omega_{\rm cp} = \frac{1}{T_1 \theta}.$$

Нетрудно видеть, используя (5.10), что это обеспечивается соотношением (5.8).

Определим теперь число ρ_1 , при котором обеспечивается требование (2.5) к точности (при достаточно малых частотах внешнего возмущения) и грубости.

В связи с этим запишем передаточные функции системы и выражение радиуса запасов устойчивости:

(5.11)
$$t_{yf}(s) = \frac{\rho(s)}{\delta_{\rho}(s)d(s)}, \quad r_a = \inf_{0 \leqslant \omega < \infty} \frac{|\delta_{\rho}(j\omega)|}{|\rho(j\omega)|}.$$

При ступенчатом внешнем возмущени
и $(f_{step}=f^*$ при $t \geqslant t_0,\,f_{step}=0$ при $t < t_0)$ выход системы определяется значением

$$|t_{yf}(0)| = \frac{|c_0| |k_0|}{|d_0| |k_0 + k_0\mu|} = \frac{|c_0|}{|d_0| |1 + \mu|}$$

Используя (5.8), запишем условие точности

(5.12)
$$\frac{|c_0| T_1 \theta}{|d_0| \left| T_1 \theta + \sqrt{\rho_1^2 + T_1^2 \theta^2} \right|} \leqslant \frac{f^*}{y^*},$$

из которого находится параметр ρ_1 , затем из (5.8) определяем число μ и проверяем на основе (5.11) условие грубости $r_a \ge r_a^*$.

5.4. Объекты при m < n - 1

Если степень полинома k(s) объекта (3.1) меньше n - 1, то формируем полином реализуемости (3.5) степени n - m - 1 и решаем тождество Безу (5.1), используя значения чисел μ и ρ_1 , определенных выше.

6. Следящая система

Следящая система описывается уравнениями:

(6.1)
$$d(s)y = k(s)u + c(s)f,$$
$$d(s)u = r(s)y + r_{cp}(s)y_r,$$

где $y_r(t)$ – измеряемое задающее воздействие. Оно является кусочно-постоянной функцией с достаточно большими интервалами постоянства.

Задача состоит в нахождении полиномов регулятора (6.1), при которых выполняются требования к точности

$$|e(t)| \leq e^*, \quad t \geq t_{\text{per}},$$

где e(t) – отклонение выхода объекта от задающего воздействия

$$e(t) = y(t) - y_r(t),$$

 e^* – заданное число (допустимая ошибка слежения), а также быстродействия (2.5) и запаса устойчивости (2.6).

Выход объекта связан с внешним возмущением при $c(s) = c_0$ и задающим воздействием в виде

$$y = \frac{g(s)c_0}{d(s)g(s) - k(s)r(s)}f + \frac{k(s)r_{\rm cp}(s)}{d(s)g(s) - k(s)r(s)}y_r.$$

Далее будем полагать, что полиномы g(s) и r(s) регулятора (6.1) получены в результате процедуры (см. с. 10). Тогда при условии (3.7) получим, что

(6.2)
$$y = \frac{g_k(s)c_0}{\delta_k(s)\delta(s)}f + \frac{k_2(s)r_{\rm cp}(s)}{\delta_k(s)\delta(s)}y_r.$$

Представим базовый полином в виде

$$\delta(s) = \delta_1(s)\delta_2(s),$$

где

$$\delta_1(s) = \prod_{i=1}^{n_1} (s + s_{\delta,i}), \quad \delta_2(s) = \prod_{i=n_1+1}^n (s + s_{\delta,i}), \quad n_1 \le n,$$

и обозначим

$$a_1 = \prod_{i=1}^{n_1} s_{\delta,i}.$$

При $\delta_k(s)=k_2(-s)$ примем полином $r_{\rm cp}(s)$ регулятора в виде

$$r_{\rm cp}(s) = a_1 \delta_2(s)$$

и запишем (6.2) в виде

$$y = y_f + y_y,$$

где

$$y_f = \frac{g_k(s)c_0}{k_2(-s)\delta(s)} f, \quad y_y = \frac{k_2(s)a_1}{k_2(-s)\delta_1(s)} y_r.$$

Из этих соотношений следует, что

$$|y_f(t)| \leqslant y^*, \quad y_y(t) = y_r \quad \text{при} \quad t \ge t_{\text{per}}.$$

7. Пример

7.1. Применение процедуры

Рассмотрим объект, описываемый уравнением

$$\ddot{y} + 6,25\ddot{y} + 26,2\dot{y} + 5y = -2\dot{u} + 5u + 5f,$$

в котором f(t) – полигармоническая функция (2.3) с ограничением $f^* = 1$. Требуется найти регулятор, обеспечивающий точность

$$|y(t)| \leqslant 0, 1, \quad t \ge t_{\text{per}},$$

быстродействие

(7.1)
$$t_{\rm per} < 0.3$$

и запасы устойчивости по фазе и модулю.

Для синтеза регулятора используем сначала процедуру.

В соответствии с операцией 1 этой процедуры сформируем корни базового полинома и полинома $\delta_k(s)$:

$$s_{\delta,1} = 8,46, \quad s_{\delta,2} = 9,3, \quad s_{\delta,3} = 10,23, \quad s_{\delta_k,1} = 10,$$

на основе требований к быстродействию (7.1) и запасам устойчивости (корни полинома объекта: $|s_{d,1}| = 0,2, |s_{d,2}| = 5, |s_{d,3}| = 5$).

Для выполнения операции 2 сформируем тождество Безу

$$(s^{3} + 6,25s^{2} + 26,2s + 5)(g_{k1}s + g_{k0}) - (-2s + 5)(r_{2}s^{2} + r_{1}s + r_{0}) =$$

= (s + 10)(s + 8,46)(s + 9,3)(s + 10,23),

решим его и получим полином $g_k(s) = (s + 162,5)$. Найдем радиус запасов устойчивости

$$r_a = 0.18,$$

который не обеспечивает грубость системы. В связи с этим увеличено число q_t и вновь повторена операция и определен новый радиус запасов устойчивости. После четырех итераций получен радиус запасов устойчивости $r_a = 0,69$. При этом достижимое время регулирования $t_{\rm per} = 5$ с.

Для реализации регулятора в правую часть добавлен полином реализуемости $\varepsilon(s) = 0.179s + 1.$ Решение тождества Безу дает в этом случае регулятор с передаточной функцией

$$w_c(s) = -\frac{1,749s^2 + 11,15s + 67,5}{0,179s^2 + 3,185s + 20,12}.$$

В соответствии с операцией 4 процедуры найден

$$\sup_{0 \leqslant \omega < \infty} |t_{yf}(j\omega)| \leqslant 0.77.$$

Эта достижимая точность отличается от требуемой почти в 10 раз.

7.2. Инерционный регулятор

Сформируем модальный полином тождества (5.1)

$$\psi(s) = (\varepsilon_1 s + 1)(2s + 5) \left[(2s + 3)(\rho_1 s + 1) + \mu(-2s + 5) \right] (s^3 + 6,25s^2 + 26,2s + 5).$$

Используя неравенство (5.12), найдем число ρ_1 . Вычислим по формуле (5.8) параметр μ :

$$\rho_1 = 20, \quad \mu = 10$$

и примем $\varepsilon_1 = 0, 1.$

Решая тождество Безу (5.1), получим регулятор с передаточной функцией

$$W_c(s) = -\frac{3,94s^4 + 34,3s^3 + 64s^2 + 278s + 49,2}{4,549s^4 + 36,6s^3 + 109s^2 + 119s + 5,7}$$

Этот регулятор обеспечивает при ступенчатом внешнем возмущении требуемую точность

 $|y(t)| \leqslant 0, 1, \quad t \ge t_{\text{per}},$

время регулирования

$$t_{\rm per} = 20 \, {\rm c},$$

и радиус запасов устойчивости

 $r_a = 0.7.$

СПИСОК ЛИТЕРАТУРЫ

- 1. Основы автоматического регулирования / Под ред. В.В. Солодовникова. М.: Машгиз, 1954.
- 2. Воронов А.А. Основы теории автоматического управления. Ч. 1. М.–Л.: Энергия, 1965.
- 3. Александров А.Г. Синтез регуляторов многомерных систем. М.: Машиностроение, 1986.
- 4. Александров А.Г. К аналитическому синтезу регуляторов // АиТ. 2010. № 6. С. 3–19.

 $Aleksandrov\;A.G.$ On Analytical Design of Controllers // Autom. Remote Control. 2010. V. 71. No. 6. P. 977–992.

- 5. *Aidan O'Dwyer*. Handbook of PI and PID controller tuning rules. London: Imperial College Press, 2009.
- Александров А.Г. Синтез регуляторов по показателям точности и быстродействию. І // АнТ. 2015. № 5. С. 27–42.
 Aleksandrov A.G. Controller Design in Precision and Speed. I // Autom. Remote Control. 2015. V. 76. No. 5. P. 749–761.
- 7. Doyle J.C., Fransis B.A., Tannenbaum R. Feedback Control Theory. Macmillein Pub. Com., 1992.
- 8. Поляк Б.Т., Хлебников М.В., Щербаков П.С. Управление линейными системами при внешних возмущения. М.: Изд-во URSS, 2014.

Статья представлена к публикации членом редколлегии П.С. Щербаковым.

Поступила в редакцию 14.01.2016