© 2018 г. А.Г. АЛЕКСАНДРОВ, д-р физ.-мат. наук (Институт проблем управления им. В.А. Трапезникова РАН, Москва)

СИНТЕЗ РЕГУЛЯТОРОВ ПО ПОКАЗАТЕЛЯМ ТОЧНОСТИ И БЫСТРОДЕЙСТВИЮ. IV. МЕТОД ДИАГОНАЛЬНОГО ДОМИНИРОВАНИЯ¹

Метод диагонального доминирования, изложенный автором ранее, развивается для объектов, неустойчивых по управлению.

Ключевые слова: синтез регуляторов, многомерные системы, неминимально-фазовые объекты, точность регулирования, запасы устойчивости.

1. Введение

Синтез регуляторов по показателям точности и быстродействию для объектов, неустойчивых по управлению, – это более сложная задача, чем для устойчивых по управлению объектов [1–3]. Уже для одномерных объектов [2] проявляется эта сложность. Так, для них может не существовать регуляторов, обеспечивающих требуемые показатели. Достижение этих показателей зависит от корней полинома k(s) с положительными вещественными частями. Из обзора, приведенного в [3], следует, что в многомерном случае синтез регуляторов для этого класса объектов исследован недостаточно.

Далее для синтеза регуляторов используется метод диагонального доминирования.

¹Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 15-08-01555).

2. Постановка задачи

Рассмотрим асимптотически устойчивую систему управления, описываемую уравнениями [3]:

(2.1)
$$D(s)y = K(s)u + cf,$$

(2.2)
$$G(s)u = R(s)y,$$

в которой полиномиальные матрицы

(2.3)
$$D(s) = \sum_{i=0}^{n_0} D^{(i)} s^i, \quad K(s) = \sum_{i=0}^{m_0} K^{(i)} s^i,$$

(2.4)
$$G(s) = \sum_{i=0}^{n_c} G^{(i)} s^i, \quad R(s) = \sum_{i=0}^{m_c} R^{(i)} s^i,$$

c – *m*-мерный вектор чисел, $y(t) \in \mathbb{R}^m$ – вектор измеряемых переменных объекта (2.1), $u(t) \in \mathbb{R}^m$ – управления, формируемые регулятором (2.2), $f(t) \in \mathbb{R}^1$ – неизвестное внешнее возмущение.

Внешнее возмущение – ограниченная полигармоническая функция

(2.5)
$$f(t) = \sum_{i=0}^{\infty} f_i \sin\left(\omega_i^f + \varphi_i^f\right),$$

в которой частоты ω_i^f и φ_i^f $(i=0,\infty)$ – неизвестны, а неизвестные амплитуды f_i удовлетворяют неравенству

(2.6)
$$\sum_{i=0}^{\infty} |f_i(t)| \leqslant f^*,$$

где f^* – известное число.

Объект системы (2.1) является неустойчивым по управлению [4] (неминимальнофазовым в одномерном случае). Это означает, что среди корней уравнения

$$(2.7) det K(s) = 0$$

имеются корни с неотрицательными вещественными частями.

Задача 2.1 состоит в нахождении регулятора (2.2), обеспечивающего требуемые показатели системы (2.1), (2.2):

(2.8)
$$|y_{b,i}(t)| \leq y_i^*, \quad t_{\mathrm{per},i} \leq t_{\mathrm{per},i}^*, \quad r_a \geqslant r_a^*, \quad i = \overline{1, m},$$

 $y_i^*,\,t^*_{\mathrm{per},i},\,(i=\overline{1,m}),\,r^*_a$ – заданные положительные числа.

Эта задача 2.1 отличается от аналогичной задачи 2.1 в [3] тем, что объект (2.1) является неустойчивым по управлению.

Предположение 2.1. Далее полагаем, что матрица объекта K(s) является диагональной

(2.9)
$$K(s) = \dot{K}(s) = \text{diag} [k_1(s), \dots, k_m(s)].$$

Один из способов преобразования матрицы K(s) к диагональной форме состоит в нахождении [5] унимодулярных матриц $V_L(s)$ и $V_R(s)$ таких, что

(2.10)
$$V_L(s)K(s)V_R(s) = \check{K}(s).$$

Записывая уравнение (2.1) как

(2.11)
$$V_L(s)D(s)y = V_L(s)K(s)V_R(s)V_R^{-1}(s)u = \check{K}(s)V_R^{-1}(s)u$$

и вводя управление $\bar{u} = V_R^{-1}(s)u$, приходим к искомой форме.

Предположение 2.2. Степени n_{ij} полиномов $d_{ij}(s)$ $(i, j = \overline{1, m}, i \neq j)$, составляющих матрицу D(s), меньше степени n_{jj} диагональных полиномов, расположенных в *j*-м столбце

(2.12)
$$n_{jj} > n_{ij} \quad (i, j = \overline{1, m}, \quad i \neq j).$$

Способ преобразования к такой структуре степенной доминантности диагональных полиномов матрицы D(s) приведен в [3].

Без потери общности полагаем, что коэффициент при старшей степени каждого полинома $d_{ii}(s), i = \overline{1, m}$, равен 1.

Уравнение объекта (2.1) имеет в развернутой форме вид

(2.13)
$$\sum_{q=1}^{m} d_{iq}(s)y_q = k_i(s)u_i + c_i f, \quad i = \overline{1, m}$$

Без потери общности будем полагать, что первые $\eta < m$ уравнений содержат полиномы $k_i(s)$ $(i = \overline{1, \eta})$, все вещественные части корней которых отрицательны. Для простоты будем полагать, что только один полином $k_m(s)$ содержит корни с положительными вещественными частями и, более того, он не содержит других корней.

Примечание 2.1. Показатели y_m^* , $t_{per,m}^*$, $r_a > r_a^*$ могут быть, как и в одномерном случае [2], недостижимыми, так как полином $k_m(s)$ содержит корни с положительными вещественными частями. Достижимые величины \bar{y}_m , $\bar{t}_{per,m}$, \bar{r}_a этих показателей известным образом зависят от корней полинома $k_m(s)$. Используя эту зависимость, можно найти достижимые значения показателей и принять

(2.14)
$$y_m^* \ge \bar{y}_m, \quad t_{\text{per},m}^* \ge \bar{t}_{\text{per},m}, \quad r_a^* \le \bar{r}_a.$$

Другой способ найти достижимые значения показателей $\bar{y}_m, \bar{t}_{\mathrm{per},m}, \bar{r}_a$ заключается в следующем.

Решить задачу 2.1 для одного показателя

$$(2.15) r_a \ge r_a^*$$

и найти для синтезированной системы показатели y_m^{**} и $t_{\text{per},m}^{**}$, которые примем за достижимые: $\bar{y}_m = y_m^{**}, \, \bar{t}_{\text{per},m} = t_{\text{per},m}^{**}$.

Наряду с объектом (2.13) рассмотрим развязанный объект

(2.16)
$$d_{ii}(s)y_i = k_i(s)u_i + c_i f, \quad i = \overline{1, m}.$$

Пусть для такого объекта построены, используя методы, предложенные в [1,2], развязанные регуляторы

(2.17)
$$g_i(s)u_i = r_i(s)y_i, \quad i = \overline{1, m_i},$$

которые обеспечивают для развязанного объекта требования к точности, быстродействию и запасам устойчивости.

3. Компенсационное управление

Представим управления u_i , $(i = \overline{1, m})$ объекта (2.13), состоящими из двух компонент: основной u_i $(i = \overline{1, m})$ и компенсационной u_{im} $(i = \overline{1, m-1})$. Компенсационный регулятор, формирующий управления u_{im} $(i = \overline{1, m})$, служит для частичной компенсации воздействия y_m на показатели выходов y_i $(i = \overline{1, m-1})$. Уравнения (2.13) принимают вид:

(3.1)
$$\sum_{j=1}^{m} d_{ij}(s)y_j = k_i(s)[u_i + u_{im}] + c_i f, \quad i = \overline{1, m-1},$$

(3.2)
$$\sum_{j=1}^{m} d_{mj}(s)y_j = k_m(s)u_m + c_m f.$$

Управления u_i $(i = \overline{1, m - 1})$ описываются уравнениями (2.17):

(3.3)
$$g_i(s)u_i = r_i(s)y_i, \quad i = \overline{1, m-1},$$

$$(3.4) g_m(s)u_m = r_m(s)y_m.$$

Управления u_{im} являются выходами регуляторов

(3.5)
$$(\rho_1 s + 1)g_{im}(s)u_{im} = r_{im}(s)y_m, \quad i = \overline{1, m-1},$$

где ρ_1 – заданное положительное число, а полином $\rho_1 s + 1$ обозначим $\rho(s) = \rho_1 s + 1$.

Полиномы регулятора имеют структуру:

(3.6)
$$g_i(s) = g_{\varepsilon i}(s)k_i(s), \quad i = \overline{1, m-1},$$

(3.7)
$$g_{im}(s) = g_{\varepsilon im}(s)k_i(s), \quad i = \overline{1, m-1}.$$

Регуляторы находятся из тождеств Безу:

(3.8)
$$d_{ii}(s)g_i(s) - k_i(s)r_i(s) = \psi_i(s) \quad i = \overline{1, m-1},$$

(3.9)
$$d_{mm}(s)g_m(s) - k_m(s)r_m(s) = \psi_m(s),$$

(3.10)
$$d_{im}(s)(\rho_1 s + 1)g_{im}(s) - k_i(s)r_{im}(s) = \psi_{im}(s), \quad i = \overline{1, m-1}.$$

Модальные полиномы имеют вид:

(3.11)
$$\psi_i(s) = \varepsilon_i(s)k_i(s)\delta_i(s), \quad i = \overline{1, m-1},$$

(3.12)
$$\psi_m(s) = \varepsilon_m(s)\delta_{km}(s)\delta_m(s),$$

где обозначено $\delta_{km}(s) = k_m(-s),$

(3.13)
$$\psi_{im}(s) = \varepsilon_{im}(s)k_i(s)\delta_{im}(s)\ \rho_1, \quad i = \overline{1, m-1},$$

где

(3.14)
$$\delta_{im}(s) = d_{im}^{n_{im}} \prod_{i=1}^{n_{im}+1} (s + s_{\delta,im}), \quad i = \overline{1, m-1}$$

 $(n_{im}$ – степень полинома $d_{im}(s), i = \overline{1, m - 1}).$

Управление u_m формируется регулятором (3.4) с полиномами:

(3.15)
$$g_m(s) = g_{\varepsilon m}(s)g_{km}(s), \quad \deg g_{km}(s) = \deg k_m(s).$$

 $\Pi p \, u \, {\it m} \, e \, {\it v} \, a \, {\it H} \, u \, e \, 3.1. \ {\rm B} \ {\rm тождестваx} \ (3.10) \ {\rm передаточные} \ {\rm функции} \ {\rm объектов} \ {\it ume-}$ ют вид

(3.16)
$$\mathbf{w}_{im}(s) = \frac{k_i(s)}{d_{im}(s)(\rho_1 s + 1)}, \quad i = \overline{1, m - 1}.$$

При обычном предположении $\deg d_{ii}(s) > \deg k_i(s)$ $(i = \overline{1, m - 1})$ может случиться так, что степень полинома числителя передаточной функции (3.16) превысит степень полинома знаменателя.

В этом случае представим полином $k_i(s)$ как

(3.17)
$$k_i(s) = k_i^{(1)}(s)k_i^{(2)}(s), \quad i = \overline{1, m-1},$$

где степень первого из сомножителей

(3.18)
$$\deg k_i^{(1)}(s) < \deg d_{im}(s)(\rho_1 s + 1), \quad i = \overline{1, m - 1}.$$

Введем новое управление

(3.19)
$$\tilde{u}_i = k_i^{(2)}(s)[u_i + u_{im}], \quad i = \overline{1, m - 1},$$

в котором $k_i^{(2)}(s)$ – полином степени $\deg k_i(s) - \deg k_i^{(1)}(s)$.

Уравнения (3.1) теперь примут вид

(3.20)
$$\sum_{j=1}^{m} d_{ij}(s)y_i = k_i^{(1)}(s)\left[\tilde{u}_i + \tilde{u}_{im}(s)\right] + c_i f, \quad i = \overline{1, m-1}.$$

Далее верхние индексы над u_i и u_{im} , $i = \overline{1, m - 1}$, будут опущены.

4. Условия точности и быстродействия

Найдем связь регулируемых переменных с внешним возмущением.

Для этого исключим управления из уравнений (3.1) и (3.2). В связи с этим умножим уравнения (3.1) на полином $b_i(s)\rho(s)$, где

(4.1)
$$b_i(s) = g_i(s)g_{im}(s) = g_{\varepsilon i}(s)k_i(s)g_{\varepsilon im}(s)k_i(s), \quad i = \overline{1, m-1},$$

(4.2)

$$\rho(s)b_{i}(s)d_{ii}(s)y_{i} + \rho(s)b_{i}(s)\sum_{\substack{j=1\\j\neq i}}^{m-1} d_{ij}(s)y_{j} + \rho(s)b_{i}(s)d_{im}(s)y_{m} = \rho(s)b_{i}(s)k_{i}(s)\left[u_{i} + u_{im}\right] + \rho(s)b_{i}(s)c_{i}f, \quad i = \overline{1, m-1},$$

(4.3)

$$\rho(s)g_{im}(s) \left[g_i(s)d_{ii}(s) - k_i(s)r_i(s)\right] y_i + \rho(s)b_i(s)\sum_{\substack{j=1\\j\neq i}}^{m-1} d_{ij}(s)y_i + g_i(s) \times \sum_{\substack{j=1\\j\neq i}}^{m-1} d_{ij}(s)y_i + g_i(s)y_i + g_i(s)y$$

Используя тождества Безу и соотношения (3.13), получим

(4.4)

$$\rho(s)g_{im}(s)\varepsilon_i(s)k_i(s)\delta_i(s)y_i + \rho(s)b_i(s)\sum_{\substack{j=1\\j\neq i}}^{m-1} d_{ij}(s)y_j + g_i(s)\varepsilon_{im}(s)k_i(s)\delta_{im}(s)\ \rho_1 y_m = \rho(s)b_i(s)c_i f, \quad i = \overline{1, m-1}$$

Учитывая структуры (3.6) и (3.15), запишем уравнение (4.4) как

(4.5)

$$\rho(s)g_{\varepsilon im}(s)\varepsilon_{i}(s)k_{i}^{2}(s)\delta_{i}(s)y_{i} + \rho(s)g_{\varepsilon i}(s)g_{\varepsilon im}(s)k_{i}^{2}(s)\sum_{\substack{j=1\\j\neq i}}^{m-1}d_{ij}(s)y_{j} + g_{\varepsilon i}(s)k_{i}(s)\varepsilon_{im}(s)k_{i}(s)\delta_{im}(s)\rho_{1}y_{m} = \rho(s)g_{\varepsilon i}(s)g_{\varepsilon im}(s)k_{i}^{2}(s)c_{i}f, \quad i = \overline{1, m-1}.$$

Учитывая, что при достаточно малых коэффициентах полиномов реализуемости $\varepsilon_i(s)$ и $\varepsilon_{im}(s)$ $(i = \overline{1, m - 1})$ полиномы $g_{\varepsilon i}(s)$ $g_{\varepsilon im}(s)$ близки к соответствующим полиномам, сократим (4.5) на эти полиномы и полиномы $k_i^2(s)$. Таким образом, получим уравнения

(4.6)
$$\rho(s)\delta_i(s)y_i + \rho(s)\left[\sum_{q=1}^{i-1} d_{iq}(s)y_q + \sum_{q=i+1}^{m-1} d_{iq}(s)y_q\right] + \rho_1\delta_{im}(s)y_m = \rho(s)c_if, \quad i = \overline{1, m-1}.$$

Эти уравнения дополним уравнением, которое следует из уравнений (3.2), (3.4) и (3.15)

(4.7)
$$g_{km}(s)\sum_{q=1}^{m-1} d_{mq}y_q + \delta_{km}(s)\delta_m(s)y_m = g_{km}(s)c_mf_s$$

Запишем эту систему как

$$(4.8) M_k(s)y = a(s)f,$$

где

(4.9)
$$a(s) = [\rho(s)c_1, \dots, \rho(s)c_{m-1}, g_{km}(s)c_m]^{\mathrm{T}},$$

(4.10)

$$M_{k}(s) = \begin{bmatrix} \rho(s)\delta_{1}(s), & \rho(s)d_{12}(s), & \dots, & \rho(s)d_{1,m-1}(s), & \rho_{1}\delta_{1m}(s) \\ \rho(s)d_{21}(s), & \rho(s)\delta_{2}(s), & \dots, & \rho(s)d_{2,m-1}(s), & \rho_{1}\delta_{2m}(s) \\ \vdots & & & \\ \rho(s)d_{m-1,1}(s), & \rho(s)d_{m-1,2}(s), & \dots, & \rho(s)\delta_{m-1}(s), & \rho_{1}\delta_{m-1,m}(s) \\ g_{km}(s)d_{m,1}(s), & g_{km}(s)d_{m,2}(s), & \dots, & g_{km}(s)d_{m,m-1}(s), & \delta_{km}\delta_{m}(s) \end{bmatrix}$$

.

Связь регулируемых переменных с внешним возмущением представим как

(4.11)
$$y_{\nu} = \frac{\det M_k^{c,\nu}(s)}{\det M_k(s)} f, \quad \nu = \overline{1,m},$$

где $M_k^{c,\nu}(s)$ – матрица $M_k(s)$, ν -й столбец которой заменен на вектор a(s).

Соответствующие передаточные функции

(4.12)
$$t_{\nu}(s) = \frac{\det M_k^{c,\nu}(s)}{\det M_k(s)}, \quad \nu = \overline{1,m}.$$

Используя эти передаточные функции, определим точность управления

(4.13)
$$y_{\nu}^{**} = \sup_{0 \leqslant \omega < \infty} |t_{\nu}(j\omega)| f^*, \quad \nu = \overline{1, m}.$$

Вместе с этим запишем аналогичные передаточные функции для развязанного объекта с развязанными регуляторами:

(4.14)
$$\bar{t}_{\nu}(s) = \frac{c_{\nu}}{\delta_{\nu}(s)}, \quad \nu = \overline{1, m-1}, \quad \bar{t}_{m}(s) = \frac{c_{m}g_{km}(s)}{\delta_{km}(s)\delta_{m}(s)}.$$

Утверждение 4.1. Существуют достаточно большие по модулю вещественные корни полиномов $\delta_i(s)$, $i = \overline{1, m - 1}$, достаточно малые по модулю вещественные корни полиномов $\delta_{im}(s)$ и достаточно малое число ρ_1 такие, что регуляторы (3.3)–(3.5) обеспечивают коэффициенты передаточных функций (4.12), сколь угодно близкие к коэффициентам передаточных функций (4.14), поэтому требования (2.8) к точности и быстродействию выполняются.

В Приложении приводится доказательство утверждения 4.1 для m = 3. В более общем случае доказательство аналогично [3], но оно существенно более громоздкое, что скрывает существо подхода.

5. Условия запасов устойчивости

Разомкнем систему (3.1), (3.2), (3.3), (3.5) по первому входу объекта. В этом случае первые из уравнений объекта и регуляторов принимают при c = 0 вид:

(5.1)
$$\sum_{j=1}^{m} d_{1j}(s)y_j = k_1(s)(-\varphi_u + u_{1m}), \quad g_1(s)u_1 = r_1(s)y_1, \quad \rho(s)g_{1m}(s)u_{1m} = r_{1m}(s)y_m,$$

где φ_u – воздействие, прикладываемое ко входу объекта вместо управления u_1 .

Выход y_1 связан с воздействием $k_1(s)\varphi_u$ как

(5.2)
$$y_1 = -t_{k1}^u(s)k_1(s)\varphi_u.$$

Подставляя это выражение во второе из уравнений (5.1), получим

(5.3)
$$u_1 = -\frac{r_1(s)}{g_1(s)} t_{k1}^u(s) k_1(s) \varphi_u = \mathbf{w}_{k1}^u(s) \varphi_u,$$

где передаточная функция системы, разомкнутой по первому входу объекта, имеет вид

(5.4)
$$\mathbf{w}_{k1}^{u}(s) = -\frac{r_1(s)}{g_1(s)}k_1(s)t_{k1}^{u}(s).$$

Используя эту передаточную функцию, найдем радиус запасов устойчивости системы при ее размыкании по первому входу объекта

(5.5)
$$r_{a,1}^{**} = \inf_{0 \le \omega < \infty} \left| 1 + w_{k_1}^u(j\omega) \right|.$$

Определим передаточную функцию $t_{k1}^u(s)$. Умножая уравнение (5.1) на полином $\rho(s)g_{1m}(s)$, получим

(5.6)
$$\rho(s)g_{1m}(s)\sum_{j=1}^{m}d_{1j}(s)y_{j} = -\rho(s)g_{1m}(s)k_{1}(s)\varphi_{u} + \rho(s)g_{1m}(s)k_{1}(s)u_{1m} = -\rho(s)g_{1m}(s)k_{1}(s)\varphi_{u} + k_{1}(s)r_{1m}(s).$$

Это выражение представим как

(5.7)
$$\rho(s)g_{1m}(s)\sum_{j=1}^{m-1}d_{1j}(s)y_j + [\rho(s)g_{1m}(s)d_{1m}(s) - k_1(s)r_{1m}(s)] = -\rho(s)g_{1m}(s)k_1(s)\varphi_u.$$

Используя тождество (3.10), получим

(5.8)
$$\rho(s)g_{1m}(s)\sum_{j=1}^{m-1}d_{1j}(s)y_j + \varepsilon_{1m}(s)k_1(s)\delta_{1m}(s)\rho_1 = -\rho(s)g_{1m}(s)k_1(s)\varphi_u.$$

Учитывая, что $g_{1m}(s) = g_{\varepsilon 1m}(s)k_1(s)$, где полином $g_{\varepsilon 1m}(s)$ близок к полиному $\varepsilon_{1m}(s)$, получим, сокращая это уравнение на полиномы $g_{1m}(s)$ и $k_1(s)$, *m*-мерные строку и вектор

(5.9)
$$M_{k1}^{\varphi,1}(s) = \left[\rho(s)d_{11}(s), \rho(s)d_{12}(s), \dots, \rho(s)d_{1,m-1}(s), \rho_1\delta_{1m}(s)\right],$$

(5.10)
$$a_{\varphi,1}(s) = \left[-\rho(s)k_1(s), 0, \dots, 0, 0\right]^{\mathrm{T}}.$$

Таким образом, запишем передаточную функцию, связывающую выход $y_1(s)$ с воздействием φ_u , как

(5.11)
$$t_{k1}^{u}(s) = \frac{\det M_{k11}^{\varphi}(s)}{\det M_{k1}^{\varphi}(s)},$$

где

(5.12)
$$M_{k1}^{\varphi}(s) = \begin{bmatrix} M_{k1}^{\varphi,1}(s) \\ M_{k}^{[1]}(s) \end{bmatrix},$$

 $M_k^{[1]}(s)$ – это (m-1) строк матрицы $M_k(s)$ кроме первой строки $M_{k1}^{\varphi,1}(s), M_{k11}^{\varphi}(s)$ – матрица $M_{k1}^{\varphi}(s)$, у которой первый вектор заменен вектором $a_{\varphi_1}(s)$.

Утверждение 5.1. Существуют достаточно большие по модулю вещественные корни полиномов $\delta_i(s)$, $i = \overline{1, m-1}$; достаточно малое число ρ_1 , достаточно малые по модулю вещественные корни полиномов $\delta_{im}(s)$ такие, что регуляторы (3.3)–(3.5) обеспечивают коэффициенты передаточных функций $w_{ki}^u(s)$, i = *1, m, сколь угодно близкие к передаточным функциям развязанной системы, и по*этому требования к запасам устойчивости выполняются. ▲

Доказательство утверждения 5.1 приведено в Приложении.

6. Процедура метода диагонального доминирования

Далее предполагается, что показатели качества (2.8) удовлетворяют условиям достижимости (2.14).

Процедура 6.1 состоит из операций:

Операция 1. Преобразовать уравнения (2.1), (2.2) к виду (2.13).

Операция 2. Найти коэффициенты регуляторов (3.3), (3.4), при которых развязанная система (2.16), (2.17) удовлетворяет требованиям (2.8).

Операция 3. Найти показатели y_i^{**} , $t_{\text{per},i}^{**}$ и $r_{a,i}^{**}$ $(i = \overline{1, m})$ системы (2.13), (3.3), (3.4) при условии $u_{im} = 0$ $(i = \overline{1, m-1})$ и сравнить их с требуемыми.

Если хотя бы одно из требований не выполняется, то переходим к следующей операции.

Операция 4. Увеличивать модули корней полиномов $\delta_i(s)$ $(i = \overline{1, m-1})$, уменьшать числа ρ_1 и модули корней полиномов δ_{im} $(i = \overline{1, m-1})$ до тех пор, пока не выполнятся требования (2.8).

7. Пример

Рассмотрим объект управления, описываемый уравнениями

(7.1)
$$\left(d_{11}^{(1)}s + d_{11}^0 \right) y_1 + d_{12}^0 y_2 = k_1(s)(u_1 + u_{12}) + c_1 f,$$

(7.2)
$$d_{21}^{0}y_1 + \left(d_{22}^{(2)}s^2 + d_{22}^{(1)}s + d_{22}^{0}\right)y_2 = k_2(s)u_2 + c_2f$$

с полиномами:

(7.3)
$$d_{11}(s) = 5s + 1, \quad d_{12}^0 = -20, \quad d_{21}^0 = -30, \quad d_{22}(s) = 7s^2 + 3,75s + 0,5,$$

(7.4)
$$k_1(s) = 1, \quad k_2(s) = -0.5s + 1, \quad c_1 = 1, \quad c_2 = 1.$$

Задача 7.1. Найти управления $u = u_1 + u_{12}$, u_2 такие, чтобы выполнялись требования (2.8) при следующих значениях их правых частей

(7.5)
$$y_1^* = 0,0025, \quad t_{\text{per},1}^* = 0,05 \text{ c}, \quad r_{a,1}^* > 0,9,$$

(7.6)
$$y_2^* = 0.15, \quad t_{\text{per},2}^* = 5 \text{ c}, \quad r_{a,2}^* > 0.7.$$

Применим процедуру 6.1 (заменив в ней номера операций римскими цифрами)

I. Объект (7.1), (7.2) имеет вид, достаточный для применения этой процедуры.

II. Найдем управления развязанной системы $(u_{12} = 0, d_{12}^0 = 0, d_{21}^0 = 0)$, обеспечивающие границы (7.5), (7.6) показателей системы. Эти управления являются решением тождеств:

(7.7)
$$\left(d_{11}^{(1)}s + d_{11}^0 \right) - r_{11}^0 = d_{11}^{(1)} \left(s + \delta_1^0 \right),$$

(7.8)
$$\begin{pmatrix} d_{22}^{(2)}s^2 + d_{22}^{(1)}s + d_{22}^0 \end{pmatrix} \begin{pmatrix} g_{22}^{(1)}s + g_{22}^0 \end{pmatrix} - \begin{pmatrix} k_2^{(1)}s + k_2^0 \end{pmatrix} \begin{pmatrix} r_{22}^{(1)}s + r_{22}^0 \end{pmatrix} = \\ = d_{22}^{(2)} \begin{pmatrix} -k_2^{(1)}s + k_2^0 \end{pmatrix} \begin{pmatrix} s^2 + \delta_2^{(1)}(s) + \delta_2^0 \end{pmatrix} \rho_1,$$

в которых числа δ_1^0 , $\delta_2^{(1)}$, δ_2^0 , ρ_1 находятся так, чтобы выполнялись требования к показателям системы с границами (7.5), (7.6).

При $\delta_1^0 = 100, \, \delta_2(s) = s^2 + 5,3s + 6,6$ получены следующие управления:

(7.9)
$$u_1 = -499y_1,$$

$$(7.10) (0.5s + 7.24)u_2 = (-54s - 42.5)y_2,$$

которые обеспечивают требуемые показатели

(7.11)
$$y_1^{**} = 0,002, \quad t_{\text{per},1}^{**} = 0,05 \text{ c}, \quad r_a = 0,998,$$

(7.12)
$$y_2^{**} = 0,156, \quad t_{\text{per},2}^{**} = 2,5 \text{ c}, \quad r_a = 0,91.$$

III. Определим показатели системы (7.1), (7.2) (7.9), (7.10) без компенсирующего управления: $(u_{12} = 0)$

(7.13)
$$y_1^{**} = 0.01, \quad t_{\text{per},1}^{**} = 2.5 \text{ c}, \quad r_{a,1}^{**} = 0.813,$$

(7.14)
$$y_2^{**} = 0,195, \quad t_{\text{per},2}^{**} = 2,5 \text{ c}, \quad r_{a,2}^{**} = 0,74.$$

Эти показатели выходят за границы (7.5), (7.6), поэтому используем компенсационное управление.

IV. Компенсационное управление находится из тождества

(7.15)
$$(\rho_1 s + 1) d_{12}^0 - r_{12}^0 = d_{12}^0 \rho_1 \left(s + \delta_{12}^0 \right),$$

параметры ρ_1 и δ_{12}^0 которого выбираются достаточно малыми положительными числами так, чтобы показатели системы (7.1), (7.2), (7.9), (7.10) с регулятором

(7.16)
$$(\rho_1 s + 1)u_{12} = r_{12}^0 y_2$$

удовлетворяли требованиям с границами (7.5), (7.6).

При

(7.17)
$$\rho_1 = 0.01, \quad \delta_{12}^0 = 0.3$$

получим

(7.18)
$$r_{12}^0 = 19,9$$

и система имеет следующие показатели:

(7.19)
$$y_1^{**} = 0,0026, \quad t_{\text{per},1}^{**} = 0,05 \text{ c}, \quad r_{a,1}^{**} = 1,$$

(7.20)
$$y_2^{**} = 0.158, \quad t_{\text{per},2}^{**} = 4 \text{ c}, \quad r_{a,2}^{**} = 0.741,$$

соответствующие требованиям.

Для анализа зависимости показателей системы от параметров базовых полиномов приведем передаточные функции, связывающие выход системы с внешним возмущением,

(7.21)
$$t_1(s) = \frac{c_1 \rho(s) k_2(-s) \delta_2(s) - c_2 d_{12}^0 \rho_1(s + \delta_{12}^0) g_{22}(s) d_{21}^0}{\rho(s) \left(d_{11}^{(1)} s + \delta_1^0 \right) k_2(-s) \delta_2(s) - g_{22}(s) d_{21}^0 d_{12}^0 \rho_1(s + \delta_{12}^0)},$$

(7.22)
$$t_2(s) = \frac{c_2\rho(s)\left(d_{11}^{(1)}s + \delta_1^0\right)g_{22}(s) - c_1\rho(s)g_{22}(s)d_{12}^0}{\rho(s)\left(d_{11}^{(1)}s + \delta_1^0\right)k_2(-s)\delta_2(s) - g_{22}(s)d_{21}^0d_{12}^0\rho_1\left(s + \delta_{12}^0\right)}$$

Они получены из уравнений (7.1), (7.2) после исключения их них управлений u_1 , u_2 , u_{12} . Это приводит к уравнениям

(7.23)
$$\begin{bmatrix} \rho(s) \left(d_{11}^{(1)} s + \delta_1^0 \right) & d_{12}^0 \rho_1 \left(s + \delta_{12}^0 \right) \\ g_{22}(s) d_{12}^0 & k_2(-s) \delta_2(s) \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \rho(s) c_1 \\ g_{22}(s) c_2 \end{bmatrix} f.$$

Для определения запасов устойчивости служат передаточные функции, первая из которых имеет вид

(7.24)
$$t_{k1}^{u}(s) = \frac{\rho(s)k_2(-s)\delta_2(s)}{\rho(s)d_{11}^{(1)}(s)k_2(-s)\delta_2(s) - g_{22}(s)d_{21}^0d_{12}^0\left(s + \delta_{12}^0\right)\rho_1}$$

Она следует из уравнений

(7.25)
$$\begin{bmatrix} \rho(s)d_{11}(s) & d_{12}^0\rho_1(s+\delta_{12}^0) \\ g_{22}(s)d_{21}^0 & k_2(-s)\delta_2(s) \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \rho(s) \\ 0 \end{bmatrix} \varphi_u.$$

Аналогично получим передаточную функцию

(7.26)
$$t_{k2}(s) = \frac{k_2(s)\rho(s)\left(d_{11}^{(1)}s + \delta_1^0\right)}{d_{22}(s)\rho(s)\left(d_{11}^{(1)}s + \delta_1^0\right) - d_{12}^0\rho_1\left(s + \delta_{12}^0\right)d_{21}^0}$$

которая следует из уравнений

(7.27)
$$\begin{bmatrix} \rho(s) \left(d_{11}^{(1)} s + \delta_1^0 \right) & d_{12}^0 \rho_1 \left(s + \delta_{12}^0 \right) \\ d_{21}^0 & d_{22}(s) \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 \\ k_2(s) \end{bmatrix} \varphi_u$$

8. Заключение

Для линейных многомерных систем неустойчивых по управлению с одинаковым числом управлений и регулируемых (одновременно измеряемых) переменных предложен метод синтеза регуляторов, обеспечивающих заданные либо достижимые показатели точности и быстродействия при скалярном почти произвольным ограниченном внешнем возмущении. Установлены условия получения заданного, либо достижимого радиуса запасов устойчивости одновременно по физическому входу и выходу объекта при размыкании замкнутой системы по отдельным контурам. Подход к синтезу опирается на оригинальный вариант метода диагонального доминирования, развитый в статье. Приведен пример, иллюстрирующий процедуру синтеза регулятора на основе предложенной техники.

Доказательство утверждения 4.1.

1. Анализ определителя матриц передаточных функций системы.

Рассмотрим определитель матрицы (4.10) при m = 3. Эта матрица имеет вид (буква "s" в обозначении полиномов здесь и далее часто опущена)

(II.1)
$$M_k(s) = \begin{bmatrix} \rho \delta_1, & \rho d_{12}, & \rho_1 \delta_{13} \\ \rho d_{21}, & \rho \delta_2, & \rho_1 \delta_{23} \\ g_{k3} d_{31}, & g_{k3} d_{32}, & \delta_{k3} \delta_3 \end{bmatrix}.$$

Определитель $M_k(s)$ запишем, разлагая по элементам третьего столбца и выделяя круглыми скобками полиномы одинаковых степеней, как

(II.2)
$$\det M_k = \alpha_k(\delta_{k3}\rho) - \rho_1\delta_{23}\delta_1d_{32}(g_{k3}\rho) + \rho_1\delta_{23}d_{12}d_{31}(g_{k3}\rho) + \rho_1\delta_{13}d_{21}d_{32}(g_{k3}\rho) - \rho_1\delta_{13}\delta_2d_{31}(g_{k3}\rho) - \rho^2d_{12}d_{21}\delta_{k3}\delta_3,$$

где

$$(\Pi.3) \qquad \qquad \alpha_k = \delta_1 \delta_2 \delta_3 \rho.$$

Обозначим все слагаемые этого определителя кроме $\alpha_k(\delta_{k3}
ho)$ как

(II.4)
$$\beta_k = \det M_k - \alpha_k (\delta_{k3}\rho).$$

Нетрудно проверить, учитывая неравенства:

$$(\Pi.5) \qquad \begin{array}{l} \deg \delta_2 > \deg d_{32}, \quad \deg \delta_2 > \deg d_{12}, \quad \deg \delta_3 \geqslant \deg \delta_{13}, \quad \deg \delta_3 \geqslant \deg \delta_{23}, \\ \deg \delta_1 > \deg d_{21}, \quad \deg \delta_1 > \deg d_{31}, \quad \deg g_{k3} = \deg \delta_{k3}, \end{array}$$

что

$$(\Pi.6) \qquad \qquad \deg \alpha_k(s) \ge \deg \beta_k(s),$$

и поэтому всегда можно найти достаточно большие по модулю корни полинома $\delta_2(s)$ и достаточно малое число ρ_1 такие, что выполняется неравенство

$$(\Pi.7) \qquad \qquad \beta_k(s) < \alpha_k(s)\theta_k$$

с достаточно малым числом θ_k .

2. Анализ числителей передаточных функций системы.

Рассмотрим теперь числители передаточных функций $t_{\nu}(s)$, ограничиваясь случаями $\nu = 1$ и $\nu = 3$.

При $\nu=1$ матрица $M^{c,1}$ имеет вид

(II.8)
$$M^{c,1} = \begin{bmatrix} \rho c_1 & \rho d_{12} & \rho_1 \delta_{13} \\ \rho c_2 & \rho \delta_2 & \rho_1 \delta_{23} \\ g_{k3} c_3 & g_{k3} d_{32} & \delta_{k3} \delta_3 \end{bmatrix}.$$

Разлагая определитель этой матрицы по элементам третьего столбца, получим полином, который следует из (П.2), если положить $\delta_1 = c_1, d_{21} = c_2, d_{31} = c_3,$

(II.9)
$$\det M^{c,1} = \alpha^{c,1}(\delta_{k3}\rho) - \rho_1 \delta_{23} c_1 d_{32}(g_{k3}\rho) + \rho_1 \delta_{23} d_{12} c_3(g_{k3}\rho) + \\ + \rho_1 \delta_{13} c_2 d_{32}(g_{k3}\rho) - \rho_1 \delta_{13} \delta_2 c_3(g_{k3}\rho) - \rho^2 d_{12} c_2 \delta_{k3} \delta_3,$$

где

(II.10)
$$\alpha^{c,1}(s) = c_1 \rho(s) \delta_2(s) \delta_3(s).$$

Представим этот полином как

(II.11)
$$\det M^{c,1}(s) = \alpha^{c,1}(s) + \beta^{c,1}(s),$$

где

(II.12)
$$\beta^{c,1}(s) = \det M^{c,1}(s) - \alpha^{c,1}(s) \left(\delta_{k3}(s)\rho(s)\right) + \delta^{c,1}(s) \left(\delta_{k3}(s)\rho($$

Учитывая неравенства (П.5), нетрудно проверить, что

(II.13)
$$\deg \alpha^{c,1}(s)\delta_{k3}(s)\rho(s) \ge \deg \beta^{c,1}(s),$$

и поэтому существуют полиномы $\delta_2(s)$ с достаточно большими коэффициентами и достаточно малое число ρ_1 такие, что выполняется условие

(II.14)
$$\beta^{c,1}(s) < \alpha^{c,1}(s)\delta_{k3}(s)\rho(s)\theta^{c,1}$$

с достаточно малым числом $\theta^{c,1}$.

Используя (П.2)–(П.4), (П.10) и пренебрегая слагаемым $\beta_k(s)$ $\beta^{c,1}(s)$, запишем

(II.15)
$$t_1(s) = \frac{c_1 \delta_{k3}(s) \delta_3(s) \rho^2 \delta_2(s)}{\rho^2(s) \delta_{k3}(s) \delta_3(s) \delta_1(s) \delta_2(s)} = \frac{c_1}{\delta_1(s)}.$$

Сравнение этой передаточной функции с передаточной функцией развязанной системы доказывает утверждение для m = 3 и $\nu = 1$.

Рассмотрим теперь случай $\nu = 3$. В этом случае аналогично (П.1) запишем

(II.16)
$$M^{c,3} = \begin{bmatrix} \rho \delta_1 & \rho d_{12} & \rho c_1 \\ \rho d_{21} & \rho \delta_2 & \rho c_2 \\ g_{k3} d_{31} & g_{k3} d_{32} & g_{k3} c_3 \end{bmatrix}.$$

Разлагая определитель этой матрицы по элементам третьего столбца, получим

(II.17)
$$\det M^{c,3} = \alpha^{c,3}(g_{k3}\rho^2) - c_2\delta_1 d_{32}(g_{k3}\rho^2) + c_2d_{31}d_{12}(g_{k3}\rho^2) + c_1d_{32}d_{21}(g_{k3}\rho^2) - c_1d_{31}\delta_2(g_{k3}\rho^2) - c_3d_{12}d_{21}(g_{k3}\rho^2),$$

где

(II.18)
$$\alpha^{c,3}(s) = c_3\delta_1(s)\delta_2(s).$$

Представим $\det M^{c,3} = \alpha^{c,3}(s) + \beta^{c,3}(s),$ где

(II.19)
$$\beta^{c,3}(s) = \det M^{c,3} - \alpha^{c,3}(s).$$

Нетрудно проверить, что

(II.20)
$$\deg \alpha^{c,3}(s) \ge \deg \beta^{c,3}(s),$$

и поэтому при достаточно больших коэффициентах полиномов $\delta_1(s)$ и $\delta_2(s)$ получим, пренебрегая полиномом $\beta^{c,3}(s)$,

(II.21)
$$t_3(s) = \frac{c_3\rho^2(s)g_{k3}(s)\delta_1(s)\delta_2(s)}{\rho^2(s)\delta_{k3}(s)\delta_3(s)\delta_3(s)\delta_1(s)\delta_2(s)} = \frac{g_{k3}(s)c_3}{\delta_{k3}(s)\delta_3(s)}$$

Сравнение этой передаточной функции с передаточной функцией развязанной системы доказывает утверждение 4.1 при m = 3.

Утверждение 4.1 доказано.

Доказательство утверждения 5.1.

Из выражений (5.9) и (5.10) следуют матрицы:

$$(\Pi.22) \qquad M_{k,1}^{\varphi} = \begin{bmatrix} \rho d_{11} & \rho d_{12} & \rho_1 \delta_{13} \\ \rho d_{21} & \rho \delta_2 & \rho_1 \delta_{23} \\ g_{k3} d_{31} & g_{k3} d_{32} & \delta_{k3} \delta_3 \end{bmatrix}; \quad M_{k,11}^{\varphi} = \begin{bmatrix} \rho k_1 & \rho d_{12} & \rho_1 \delta_{13} \\ 0 & \rho \delta_2 & \rho_1 \delta_{23} \\ 0 & g_{k3} d_{32} & \delta_{k3} \delta_3 \end{bmatrix}.$$

Определитель первой из этих матриц

(II.23)
$$\det M_{k,1}^{\varphi} = \alpha_{k1}^{\varphi} - \rho_1 \delta_{23} d_{32} d_{11}(g_{k3}\rho) + \rho_1 \delta_{23} d_{31} d_{12}(g_{k3}\rho) + \rho_1 \delta_{13} d_{32} d_{21}(g_{k3}\rho) - \rho_1 \delta_{13} d_{31} \delta_2(g_{k3}\rho) - \rho \delta_3 d_{12} d_{21}(\delta_{k3}\rho),$$

где $\alpha_{k_1}^{\varphi}(s) = \rho d_{11} \delta_2 \delta_3(\delta_{k_3} \rho)$. Обозначим через $\beta_{k_1}^{\varphi}(s)$ остальные слагаемые определителя матрицы $M_{k,1}^{\varphi}(s)$.

Учитывая соотношения (П.5) для степеней полиномов, нетрудно проверить, что

(II.24)
$$\deg \alpha_{k1}^{\varphi}(s) \ge \deg \beta_{k1}^{\varphi}(s).$$

Определитель второй из матриц (П.22)

(II.25)
$$\det M_{k,11}^{\varphi} = \rho k_1 \left[\rho \delta_2 \delta_3(\delta_{k3}) - \rho_1 \delta_{23} d_{32}(g_{k3}) \right] = \alpha_{k11}^{\varphi}(s) + \beta_{k11}^{\varphi}(s),$$

где $\alpha_{k11}^{\varphi}(s) = \rho(s)^2 k_1(s) \delta_{k3}(s) \delta_2(s) \delta_3(s), \ \beta_{k11}^{\varphi}(s)$ – остальные слагаемые определителя матрицы $M_{k,11}^{\varphi}(s)$.

Очевидно, что

(II.26)
$$\deg \alpha_{k11}^{\varphi}(s) \ge \deg \beta_{k11}^{\varphi}(s).$$

Пренебрегая полиномами $\beta_{k1}^{\varphi}(s)$, $\beta_{k11}^{\varphi}(s)$, при достаточно малых числах ρ_1 и достаточно больших по модулю корнях полиномов $\delta_2(s)$ запишем отношение

(II.27)
$$t_{k1}^{\varphi}(s) = \frac{\alpha_{k11}^{\varphi}(s)}{\alpha_{k1}^{\varphi}(s)} = \frac{\rho^2 k_1(s) \delta_{k3}(s) \delta_2(s) \delta_3(s)}{\rho^2 \delta_{k3}(s) \delta_2(s) \delta_3(s) d_{11}(s)} = \frac{k_1(s)}{d_{11}(s)},$$

которое доказывает утверждение 5.1 при $m = 3, \nu = 1.$

Утверждение 5.1 доказано.

СПИСОК ЛИТЕРАТУРЫ

1. Александров А.Г. Синтез регуляторов по показателям точности и быстродействию. І. // АиТ. 2015. № 5. С. 27–42.

Aleksandrov A.G. Controller Design in Precision and Speed. I. // Autom. Remote Control. 2015. V. 76. No. 5. P. 749–761.

 Александров А.Г. Синтез регуляторов по показателям точности и быстродействию. II. // АиТ. 2017. № 6. С. 3–17. Aleksandrov A.G. Design of Controllers by Indices of Precision and Speed. II. //

Autom. Remote Control. 2017. V. 78. No. 6. P. 961–973.

- 3. *Александров А.Г.* Синтез регуляторов по показателям точности и быстродействию. III. // АиТ. 2018.
- 4. *Фомин В.Н., Фрадков А.Л., Якубович В.А.* Адаптивное управление динамическими объектами. М.: Наука, 1981.
- 5. Гантмахер Ф.Р. Теория матриц. М.: Гостехиздат, 1954.