© 2010 г. А. Г. Александров, д-р физ.-мат. наук (Институт проблем управления им.В.А.Трапезникова РАН, Москва)

К АНАЛИТИЧЕСКОМУ СИНТЕЗУ РЕГУЛЯТОРОВ¹

Предлагается метод синтеза регуляторов линейных объектов при ограниченных кусочно— непрерывных внешних возмущениях.

1. Введение

Проблема синтеза регуляторов является одной из центральных в теории автоматического управления. Первым методом синтеза по прямым показателям точности и качества (установившейся ошибке, времени регулирования, запасам устойчивости) был метод ЛАЧХ [1,2]. Это графо-аналитический метод проб и ошибок позволяет синтезировать регуляторы для устойчивых, минимально-фазовых одномерных объектов. Он обеспечивает грубость системы (запасы устойчивости по фазе и модулю). Появление в 1960г. аналитического конструирования регуляторов (LQ-оптимизации)[3,4] открыло возможность существенного расширения класса объектов, для которых может быть синтезирован регулятор. В связи с этим начал развиваться [5] аналитический синтез регуляторов, в рамках которого были исследованы частотные свойства LQ-оптимальных систем и даны способы выбора структуры и коэффициентов квадратичного функционала, при которых оптимальная система является грубой и обладает требуемыми прямыми показателями при ступенчатых и гармонических типовых воздействиях [6–10].

В [11] рассмотрен более общий случай, когда внешнее возмущение-ограниченная полигармоническая функция с конечным числом неизвестных гармоник. Процедура синтеза использует LQ и $H\infty$ -оптимизацию.

Ниже аналитический синтез регуляторов развивается для случая, когда внешнее возмущение неизвестная ограниченная кусочно-непрерывная функция.

Заметим, что l_1 -оптимальное управление [12,13] позволяет построить регулятор для дискретного объекта, который обеспечивает наименьшую ошибку регулирования при неизвестном ограниченном возмущении. Однако такой регулятор может не обеспечивать грубость и необходимое быстродействие системы.

2. Постановка задачи

Рассмотрим систему управления, описываемую уравнениями

(2.1)
$$y^{(n)} + d_{n-1}y^{(n-1)} + \ldots + d_0y = k_{\gamma}u^{(\gamma)} + \ldots + k_0u + m_{\eta}f^{(\eta)} + \ldots + m_0f, \\ \gamma < n, \quad \eta < n, \quad m_0 \neq 0, \quad t \geqslant 0,$$

(2.2)
$$g_{n-1}u^{(n-1)} + \ldots + g_0u = r_{n-1}y^{(n-1)} + \ldots + r_0y,$$

 $^{^1}$ Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 05-08-01177).

в которых y(t) и u(t)-измеряемые выходы объекта (2.1) и регулятора (2.2) , f(t)-внешнее возмущение, коэффициенты этих уравнений- числа.

Внешнее возмущение f(t) -ограниченная полигармоническая функция

(2.3)
$$f(t) = \sum_{i=0}^{\infty} f_i \sin(\omega_i^f t + \phi_i^f),$$

частоты ω_i^f и фазы ϕ_i^f которой неизвестны, а неизвестные амплитуды f_i удовлетворяют условию

$$(2.4) \sum_{i=0}^{\infty} |f_i| \leqslant f^*,$$

где f^* – известное число.

Заметим, что при выполнении этого условия внешнее возмущение ограничено числом f^* :

$$(2.5) |f(t)| \leqslant f^*.$$

Однако при условии (2.5) неравенство (2.4) может нарушаться.

Частным случаем функции возмущения (2.3) является кусочно-непрерывная функция, разложимая в ряд Фурье.

Наряду с уравнениями (2.1) и (2.2) будем использовать их преобразования по Лапласу при нулевых начальных условиях

$$(2.6) d(s)y = k(s)u + m(s)f,$$

$$(2.7) g(s)u = r(s)y,$$

где
$$d(s) = s^n + \sum_{i=0}^{n-1} d_i s^i$$
, $k(s) = \sum_{i=0}^{\gamma} k_i s^i$, $m(s) = \sum_{i=0}^{\eta} m_i s^i$, $g(s) = \sum_{i=0}^{n-1} g_i s^i$, $r(s) = \sum_{i=0}^{n-1} r_i s^i$.

Установившейся ошибкой будем называть число

$$(2.8) y_{ss} = limsup_{t\to\infty}|y(t)|.$$

Время регулирования будем характеризовать числом

$$(2.9) t_{tr} = \min_{1 \le i \le 2n-1} |Res_i^s|^{-1},$$

где s_i^s $(i=\overline{1,2n-1})$ – корни характеристического полинома системы (2.1), (2.2):

(2.10)
$$d^{s}(s) = d(s)g(s) - k(s)r(s).$$

Коэффициенты объекта могут незначительно отличаться от известных значений из-за их разброса в пределах технологических допусков на изготовление узлов объекта, из-за старения объекта и т.п. Чувствительность (грубость) системы к таким параметрическим возмущениям будем характеризовать радиусом запасов устойчивости [14] системы.

Радиус запасов устойчивости г определяется выражением

(2.11)
$$r^{2} = \inf_{0 \le \omega \le \infty} [1 + w(-j\omega)][1 + w(j\omega)],$$

где $w(s) = -\frac{k(s)r(s)}{d(s)g(s)}$ -передаточная функция разомкнутой системы (2.1),(2.2).

Геометрически число r – это радиус наибольшего круга с центром в точке (-1;0), в который не заходит годограф Найквиста. Он является обобщением понятий запасов устойчивости по фазе φ_3 и модулю L. Так, если r=0,75, то запас по фазе $\varphi_3\geqslant 45^\circ$, запас по модулю $L\geqslant 1,75$. При r=1 выполняются неравенства $\varphi_3\geqslant 60^\circ$, $L\geqslant 2$.

Будем называть систему (2.1),(2.2) грубой, если $r \geqslant r^*$, где $r^* = 0,75$

 $3a\partial aua1$ (аналитического синтеза регуляторов)состоит в том, чтобы найти коэффициенты регулятора (2.2) такие, чтобы система (2.1), (2.2) удовлетворяла требованиям к точности

$$(2.12) y_{ss} \leqslant y_{ss}^*$$

времени регулирования

$$(2.13) t_{tr} \leqslant t_{tr}^*$$

и грубости

$$(2.14) r \geqslant r^*,$$

где y_{ss}^{*} и t_{tr}^{*} -заданные положительные числа.

3. Существо подхода

Искомый регулятор находится из тождества Безу

(3.1)
$$d(s)q(s) - k(s)r(s) = \delta_0(s),$$

в котором гурвицев полином (полином, все корни которого имеют отрицательные вещественные части) $\delta_0(s)$ степени 2n-1 находится из уравнения

(3.2)
$$\delta_0(-s)\delta_0(s) = k(-s)k(s)[d(-s)d(s) + qp(-s)p(s)],$$

где положительное число q и коэффициенты гурвицева полинома $p(s) = s^{n-1} + \sum_{i=0}^{n-2} p_i s^i$ определяются из условий задачи 1. Здесь и далее полагаем, для простоты, что степень полинома k(s):

$$(3.3) \gamma = n - 1.$$

Из структуры полинома $\delta_0(s)$, которая следует из уравнения (3.2), заключаем, что корни $s_i^k (i=\overline{1,n-1})$ полинома k(s) должны удовлетворять условию

$$\min_{1 \leq i \leq n-1} \left| Res_i^k \right| \geqslant t_{tr}^{*-1}$$

и поэтому далее будем рассматривать объекты, для которых это условие выполняется.

Примечание 1. Полином в правой части уравнения (3.2) является полиномом уравнения для экстремалей функционала

(3.5)
$$I = \int_0^\infty [q(\tau_0 y^2 + \tau_1 \dot{y}^2 + \dots + \tau_{n-1} y^{(n-1)2}) + \rho_0 u^2 + \rho_1 \dot{u}^2 + \rho_{n-1} u^{(n-1)2}] dt,$$

чьи коэффициенты являются коэффициентами полиномов

(3.6)
$$\rho(s^2) = \sum_{i=0}^{n-1} \rho_i s^{2i} (-1)^i = k(-s)k(s), \tau(s^2) = \sum_{i=0}^{n-1} \tau_i s^{2i} (-1)^i = p(-s)p(s).$$

Для исследования точности системы (2.1),(2.2) запишем ее передаточную функцию $T_{yf}(s)$, связывающую выход с внешним возмущением. Эта передаточная функция имеет вид

(3.7)
$$T_{yf}(s) = \frac{g(s)m(s)}{d(s)g(s) - k(s)r(s)}.$$

Ee H_{∞} – норма определяется как

(3.8)
$$||T_{yf}(s)|| = \sup_{0 \le \omega \le \infty} |T_{yf}(j\omega)|.$$

Символ ∞ в обозначении этой нормы здесь и далее опущен.

Почти очевидно (ниже это показано строго), что для выполнения требования (2.12) к точности достаточно, чтобы

(3.9)
$$||T_{yf}(s)|| \leq \frac{y_{ss}^*}{f^*}.$$

Для анализа грубости этой системы запишем функцию ее возвратной разности

(3.10)
$$v(s) = 1 + w(s) = \frac{d(s)g(s) - k(s)r(s)}{d(s)g(s)}.$$

Из выражения (2.11) следует, что для выполнения требования к грубости достаточно, чтобы выполнялось неравенство

(3.11)
$$inf_{0 \leq \omega < \infty} v(-j\omega)v(j\omega) \geqslant r^{*2}.$$

С учетом уравнения (3.1) запишем выражения (3.9) и (3.11) как

$$(3.12) ||\frac{g(s)m(s)}{\delta_0(s)}|| \leqslant \frac{y_{ss}^*}{f^*}, in f_{0 \leqslant \omega < \infty} \frac{\delta_0(-j\omega)\delta_0(-j\omega)}{d(-j\omega)d(j\omega)g(-j\omega)g(j\omega)} \geqslant r^{*2}.$$

Таким образом, решение задачи 1 сводится к определению параметра q и коэффициентов полинома p(s) из неравенств (3.12) и условия

$$\min_{1 \leq i \leq 2n-1} \left| Res_i^{\delta} \right| \geqslant t_{tr}^{*-1},$$

в котором $s_i^\delta,\ (i=\overline{1,2n-1})$ -корни полинома $\delta_0(s).$

Ниже при решении задачи 1 будем рассматривать два вида объектов: минимально-фазовые, у которых k(s)-гурвицев полином, и неминимально-фазовые объекты с полиномом k(s), содержащим корни с неотрицательной вещественной частью. Для неминимально-фазовых объектов решения задачи 1 может не существовать, и тогда необходимо найти минимальные числа y_{ss} и t_{tr} , при которых может быть построен регулятор, решающий эту задачу.

4. Минимально-фазовые объекты

Если полином k(s) объекта (2.6) гурвицев, то решение уравнения (3.1) имеет вид

(4.1)
$$g(s) = k(s), r(s) = d(s) - \delta(s),$$

где $\delta(s)$ – гурвицев полином, который находится из тождества

$$\delta(-s)\delta(s) = d(-s)d(s) + qp(-s)p(s).$$

Характеристический полином системы (2.6),(2.7) с регулятором (4.1) записывается как

$$(4.3) ds(s) = \delta_0(s) = k(s)\delta(s).$$

В книге [15] показано, что всегда существует достаточно большое число q такое, что

(4.4)
$$\delta(s) = (s + \sqrt{q})p(s) + 0_1(s, q),$$

где $0_1(s,q)$ -полином, чьи коэффициенты исчезают с ростом числа q.

Выберем коэффициенты гурвицева полинома p(s) так , чтобы его корни s_i^p $(i=\overline{1,n-1})$ и параметр q удовлетворяли условиям

(4.5)
$$\min_{1 \le i \le n-1} |Res_i^p| \ge t_{tr}^{*-1}, \quad q^{1/2} \ge t_{tr}^{*-1},$$

тогда с учетом условия (3.4) требование (2.13) к времени регулирования выполняется.

Условия выполнения требования (2.12) к точности дает следующее

Утверждение 1. Регулятор (2.7) с полиномами (4.1) обеспечивает выполнение требования (2.12) к точности системы (2.6), (2.7) с минимально-фазовым объектом, если в уравнении (4.2) параметр q удовлетворяет неравенству

(4.6)
$$q \geqslant \frac{f^{*2}}{y_{ss}^{*2}} ||w_{mp}(s)||^2,$$

в котором $w_{mp}(s) = \frac{m(s)}{p(s)}$.

Доказательство этого и последующих утверждений приведено в Приложении.

Для анализа грубости системы запишем на основе (3.10) и (4.3) выражение

$$(4.7) v(-j\omega)v(j\omega) = \frac{k(-j\omega)k(j\omega)\delta(-j\omega)\delta(j\omega)}{k(-j\omega)k(j\omega)d(-j\omega)d(j\omega)} = 1 + \frac{p(-j\omega)p(j\omega)}{d(-j\omega)d(j\omega)} \geqslant 1,$$

из которого следует, что построенная система грубая.

Решение задачи 1 носит итерационный характер: вначале, из условия (4.5) определяются коэффициенты полинома p(s), а из неравенств (4.6) и (3.13)-параметр q, затем находятся корни полинома (4.2), и если они не удовлетворяют требованиям (3.13), то число q увеличивается, вновь вычисляются корни этого полинома и так до тех пор пока не выполнятся неравенства (3.13).

Выделим два частных случая полиномов (4.1) регулятора.

 Π ервый случай возникает, когда полином m(s) объекта гурвицев и его корни $s_i^m \ (i=\overline{1,\eta})$ удовлетворяют условию

(4.8)
$$\min_{1 \leq i \leq \eta} |Res_i^m| \geqslant t_{tr}^{*-1}.$$

В этом случае сформируем полином p(s) уравнения (4.2) как

$$(4.9) p(s) = m(s)p_1(s),$$

где $p_1(s) = \sum_{i=0}^{n-1-\eta} p_i^{(1)} s^i$ -гурвицев полином. Тогда из выражений (3.7), (4.1) и (4.4) следует, что существует достаточно большое число q, при котором передаточная функция по внешнему возмущению имеет вид

(4.10)
$$T_{yf}(s) = \frac{m(s)}{\delta(s)} = \frac{m(s)}{(s + \sqrt{q})m(s)p^{(1)}(s) + 0_1(s,q)}.$$

Требование (2.12) к точности выполняется, если при условии (4.4)

(4.11)
$$q \geqslant \frac{f^{*2}}{y_{ss}^{*2}} ||1/p_1(s)||^2.$$

Кроме того, из выражения (4.10) следует, что при ступенчатом внешнем возмущении перегулирование всегда может быть сделано малым при соответствующем выборе корней полинома $p_1(s)$.

Второй случай относится к следящей системе, описывамой уравнениями

$$(4.12) d(s)y = k(s)u, q(s)u = r(s)(y-c), z = y-c,$$

где c(t)-задающее воздействие, z(t)-ошибка слежения.

Если полиномы регулятора в системе (4.12) имеют вид (4.1), то ее передаточная функция, связывающая выход объекта с задающим воздействием, записывается как

(4.13)
$$T_{yc}(s) = -\frac{r(s)}{\delta(s)}.$$

Теперь запишем с учетом (4.4) следующее выражение для полинома r(s):

$$(4.14) r(s) = d(s) - \delta(s) = (d_{n-1} - p_{n-2}) s^{n-1} + \dots + (d_1 - p_0) s + d_0 - \sqrt{q} p(s) + 0_1(s, q).$$

Если число \sqrt{q} таково, что $|d_{i-1}-p_{i-2}|\leqslant \sqrt{q}$ p_{i-1} $(i=\overline{1,n}),$ $p_{-1}=0,$ то $r(s)=-\sqrt{q}$ $(p(s)+0_2(s,q)),$

где $0_2(s,q)$ -полином, чьи коэффициенты можно сделать (выбором достаточно большого числа q) сколь угодно малыми. Тогда передаточная функция (4.13) принимает вид

(4.15)
$$T_{yc}(s) = \frac{\sqrt{q} (p(s) - 0_2(s, q))}{(s + \sqrt{q})p(s) + 0_1(s, q)}.$$

Пренебрегая полиномами $0_1(s,q)$ и $0_2(s,q)$, получим

(4.16)
$$T_{yc}(s) \simeq \frac{\sqrt{q}}{(s+\sqrt{q})}.$$

Это означает, что время регулирования $t_{tr} \simeq 1/\sqrt{q}$, а ошибка слежения на частотах меньших \sqrt{q} может быть сделана выбором q сколь угодно малой.

5. Неминимально-фазовые объекты

Пусть полином k(s) объекта (2.6) имеет вид

(5.1)
$$k(s) = \bar{k}(s)(-Ts+1),$$

где $\bar{k}(s) = \sum_{i=0}^{n-2} \bar{k}_i s^i$ – гурвицев полином, T-положительное число, $T < t^*_{tr}$. Очевидно, что решение уравнения (3.1) имеет вид

(5.2)
$$g(s) = \bar{k}(s)(Ts + g_0),$$

где число g_0 и коэффициенты полинома r(s) находятся из тождества Безу:

(5.3)
$$d(s)(Ts+g_0) - (-Ts+1)r(s) = (Ts+1)\delta(s).$$

Учитывая это выражение, запишем передаточную функцию (3.7) и функцию возвратной разности (3.10) как

(5.4)
$$T_{yf}(s) = \frac{(Ts + g_0)m(s)}{(Ts + 1)\delta(s)}, \quad v(s) = \frac{(Ts + 1)\delta(s)}{(Ts + g_0)d(s)}.$$

Из этих соотношений следует, что точность и грубость системы (2.1),(2.2) сложным образом зависит от параметра q и коэффициентов полинома p(s). Это связано с коэффициентом g_0 , который находится из тождества (5.3). Для минимальнофазового объекта $g_0=1$ и поэтому точность и грубость системы явно зависят от коэффициентов, входящих в полином $\delta(s)$.

Чтобы найти коэффициент g_0 , введем число $s_T=1/T$, подставим в тождество (5.3) $s=s_T$ и после несложных преобразований с учетом $d_n=\delta_n=1$ получим

(5.5)
$$g_0 = \frac{1 + \sum_{i=1}^n (2\delta_{n-i} - d_{n-i})T^i}{1 + \sum_{i=1}^n d_{n-i}T^i}.$$

Из этого выражения следует, что при заданных числах d_i и δ_i , $i=\overline{0,n-1}$ и любом сколь угодно малом положительном числе ε_g^* существует достаточно малое значение постоянной времени T такое, что $g_0=1+\varepsilon_g$, где $|\varepsilon_g|\leqslant \varepsilon_g^*$.

Построим конструктивные достаточные условия (являющиеся следствием выражения (5.5)), связывающие коэффициент g_0 с постоянной времени T и корнями $-s_i$, $-s_i^\delta$ полиномов

$$d(s) = s^n + \sum_{i=0}^{n-1} d_i s^i = \prod_{i=1}^n (s+s_i), \delta(s) = s^n + \sum_{i=0}^{n-1} \delta_i s^i = \prod_{i=1}^n (s+s_i^{\delta}).$$

При этих условиях задача 1 имеет (утверждение 2) либо не имеет (утверждение 3) решение.

Эти условия получены для объектов, корни полинома d(s) которых вещественны и связаны с величиной $s_T=1/T$ как

$$(5.6) s_1^2 \leqslant s_2^2 \leqslant \dots \leqslant s_n^2 < s_T^2.$$

Корни $s_i^\delta, i=\overline{1,n}$ полинома $\delta(s)$ также вещественные и выполняются неравенства

$$(5.7) (s_1^{\delta})^2 \leqslant (s_2^{\delta})^2 \leqslant \dots \leqslant (s_n^{\delta})^2 < s_T^2,$$

которые обеспечиваются выбором вещественных корней полинома p(s) и достаточно большим коэффициентом q.

Переходя к условиям, при которых задача 1 имеет решение, введем числа

(5.8)
$$\varepsilon_1 = |s_n|/s_T, \quad \varepsilon_2 = s_n^{\delta}/s_T, \quad 0 < \varepsilon_i < 1, \quad i = 1, 2.$$

Утверждение 2. Существуют положительные числа ε_1 и ε_2 такие, что число $g_0 = 1 + \varepsilon_g$, где величина ε_g удовлетворяет неравенству $|\varepsilon_g| \leqslant \varepsilon_g^*$, в котором ε_g^* -заданное сколь угодно малое число.

Доказательство утверждения носит конструктивный характер, и в Приложении получены формулы, позволяющие определить числа ε_1 и ε_2 по заданному числу ε_a^* .

Из выражений (3.7),(4.7),(5.4) следует, что всегда можно указать достаточно малое число ε_g^* такое, что регулятор (2.7) с полиномами, полученными из уравнений (5.2) и (5.3)(в которых полином $\delta(s)$ удовлетворяет условиям (4.5) и (4.6)), дает решение задачи 1.

Рассмотрим теперь случай, когда последнее из неравенств (5.7) не выполняется и корни полинома $\delta(s)$ удовлетворяют условиям

$$(5.9) s_T^2 < (s_1^{\delta})^2 \leqslant (s_2^{\delta})^2 \leqslant \dots \leqslant (s_n^{\delta})^2.$$

Утверждение 3. Существуют положительные числа ε_1 и $\varepsilon_3 = s_T/s_1^{\delta}$ такие, что радиус запасов устойчивости системы (2.6) и (2.7) с полиномами регулятора , полученными из уравнений (5.2) и (5.3), сколь угодно мал:

$$(5.10) r^2 \leqslant (2\varepsilon_3^2)^{n-1}0, 5(1+\varepsilon_3).$$

Оценим норму передаточной функции системы, имеющей запас устойчивости (5.10). Заметим , что из выражений (3.7) и (3.10) следует

(5.11)
$$T_{yf}(s) = \frac{m(s)}{d(s)v(s)}.$$

При $\omega = s_1^{\delta}$ получим оценку

(5.12)
$$T_{yf}(-js_1^{\delta})T_{yf}(js_1^{\delta}) \geqslant \frac{m(-js_1^{\delta})m(js_1^{\delta})}{d(-js_1^{\delta})d(js_1^{\delta})(2\varepsilon_3^2)^{n-1}0, 5(1+\varepsilon_3)},$$

из которой следует, что установившаяся ошибка системы может быть сколь угодно велика при малых значениях ε_3 .

Из неравенств (5.10) и (5.12) можно найти значение постоянной времени T, при котором задача 1 не имеет решения.

6. Многомерные объекты

6.1. Регулятор состояния

Рассмотрим систему управления, описываемую уравнениями

$$\dot{x} = Ax + B(u + \rho), \quad z = Cx,$$

$$(6.2) u = Kx,$$

где $x(t) \in \mathbb{R}^n$ – измеряемый вектор состояния полностью управляемого объекта (6.1), $u(t) \in \mathbb{R}^m$ – управление (выход регулятора (6.2)), $z(t) \in \mathbb{R}^m$ – регулируемые переменные, $\rho(t) \in \mathbb{R}^m$ – внешнее возмущение, компоненты которого связаны с функцией f(t), описываемой выражением (2.3), соотношениями

(6.3)
$$\rho_i(t) = \mathfrak{X}_i f(t) \quad (i = \overline{1, m}),$$

где \mathfrak{E}_i $(i=\overline{1,m})$ – заданные числа, характеризующие интенсивность возмущения f(t), приложенных в местах приложения управлений.

Установившиеся ошибки по регулируемым переменным определяются как

(6.4)
$$z_{ss,i} = \lim_{t \to \infty} \sup |z_i(t)| \quad (i = \overline{1, m}).$$

Время регулирования системы характеризуется выражением (2.9), в котором s_i^s ($i=\overline{1,n}$) — корни полинома $\det(Es-A-BK)$, а её радиус запасов устойчивости, определяемый как наибольшее число r, при котором

(6.5)
$$[E_m + W(-j\omega)] [E_m + W(j\omega)] \geqslant E_m r^2, \quad 0 \leqslant \omega < \infty,$$

где $W(s) = -K(Es - A)^{-1}B$, удовлетворяет условию $r \geqslant r^*$.

Найдем матрицу K регулятора (6.2) такую, чтобы выполнялись требования

$$(6.6) z_{ss,i} \leqslant z_{ss,i}^* \quad (i = \overline{1,m})$$

(где $z_{ss,i}^*$ $(i=\overline{1,m})$ - заданные числа) к точности, а также требования ко времени регулирования (2.13) и грубости (6.5).

Будем искать эту матрицу как

$$(6.7) K = -B^T P,$$

где P — симметричная неотрицательно определенная матрица ($P=P^T\geqslant 0$), удовлетворяющая уравнению Риккати

$$A^T P + PA - PBB^T P = -\eta C^T QC,$$

в котором элементы q_{ii} $(i=\overline{1,m})$ диагональной матрицы Q и параметр η удовлетворяют условиям

(6.9)
$$q_{ii} \geqslant \left(\sum_{i=1}^{m} \mathcal{X}_{i}^{*2}\right) \frac{f^{*2}}{z_{ss,i}^{*2}} \quad (i = \overline{1, m}), \quad \eta = 1.$$

Утвержсение 4. Установившиеся ошибки системы (6.1), (6.2), матрица K которой определяется соотношениями (6.7) – (6.9), удовлетворяют требованиям (6.6).

В связи с требованием (2.13) к времени регулирования рассмотрим передаточную матрицу объекта (6.1)

$$W_0(s) = C (Es - A)^{-1} B,$$

определитель которой имеет вид [15]:

(6.10)
$$\det [W_0(s)] = \alpha \frac{\prod_{i=1}^{\beta} (s - \nu_i)}{\prod_{i=1}^{n} (s - s_i)}, \quad \alpha \neq 0.$$

Если для корней ν_i $(i=\overline{1,\beta})$ выполняется условие, аналогичное (3.4),

(6.11)
$$\min_{1 \leq i \leq \beta} |\operatorname{Re} \nu_i| \geqslant (t_{tr}^*)^{-1},$$

то в соответствии с [15], всегда найдется достаточно большое значение параметра $\eta > 1$, при котором система (6.1), (6.2), (6.7), (6.9) удовлетворяет требованию (2.13) к времени регулирования. Эта система удовлетворяет также требованию (2.14) к грубости с $r^* = 1$. Это следует из условия [16] оптимальности в частотной форме. (6.12)

$$[E_m + W(-j\omega)][E_m + W(j\omega)] = E_m + B^T (E_s - A)^{-1T} C^T QC (E_s - A)^{-1} B, \ 0 \le \omega < \infty.$$

6.2. Динамический регулятор для минимально-фазового объекта

Пусть объект управления описывается уравнениями

$$\dot{x} = Ax + Bu + \psi f, \quad y = Cx, \quad z = y,$$

где $y(t) \in \mathbb{R}^m$ — измеряемые переменные, ψ — заданный вектор, который может не совпадать с вектором Bæ уравнения (6.1).

Объект (6.13) в форме "вход-выход"имеет вид

(6.14)
$$T_1(s)y = T_2(s)u + l(s)f,$$

где $T_1(s)$ и $T_2(s)$ – полиномиальные квадратные матрицы, l(s) –вектор полиномов.

Будем полагать, что объект (6.14) - минимально-фазовый ($\operatorname{Re} \tilde{s}_i < 0$ $(i = \overline{1, \gamma})$, где \tilde{s}_i $(i = \overline{1, \gamma})$ -корни полинома $\det T_2(s)$). Пусть корни полинома $\det T_2(s)$ удовлетворяют неравенству $\min_{1 \leqslant i \leqslant \gamma} |Re\tilde{s}_i| \geqslant t_{tr}^{*-1}$, а вектор ψ таков, что вектор полиномов l(s) является вектором чисел l_0 $(l(s) = l_0)$. Без ограничения общности будем полагать также, что степени $n_i = \deg t_{1i}(s)$ $(i = \overline{1,m})$, $(\sum_{i=1}^m n_i = n)$ диагональных полиномов матрицы $T_1(s)$ не превышают степени полиномов i-го столбца этой матрицы:

(6.15)
$$\deg t_{1ii}(s) > \deg t_{1ij}(s), \quad j \neq i, \quad i, j = \overline{1, m}.$$

Регулятор в форме "вход-выход"имеет вид

$$(6.16) G(s)u = R(s)y,$$

где G(s) и R(s) -полиномиальные квадратные матрицы.

Грубость системы (6.14),(6.16) будем характеризовать следующим неравенством, введенным в [6]:

(6.17)
$$\det \left[E_m + W(-j\omega) \right] \det \left[E_m + W(j\omega) \right] \geqslant r^{*2},$$

где

(6.18)
$$W(s) = -G^{-1}(s)R(s)T_1^{-1}(s)T_2(s).$$

Матрицы регулятора (6.16) находятся следующим образом. Введем векторы

(6.19)
$$\bar{u} = T_2(s)u, \quad \rho = \mathfrak{E}f, \quad \mathfrak{E} = l_0.$$

Тогда уравнение (6.14) примет вид

(6.20)
$$T_1(s)y = \bar{u} + \rho.$$

Повторяя преобразования из [6], используем переменные $\hat{x}_1 = y, \ \hat{x}_2 = \dot{y}, \dots,$ $\hat{x}_{n_1} = y^{n_1-1}, \ \hat{x}_{n_1+1} = y_2, \dots$ и запишем уравнение (6.20) как

(6.21)
$$\dot{\hat{x}} = \hat{A}\hat{x} + \hat{B}(\bar{u} + \rho), \quad y = \hat{C}\hat{x},$$

где $\hat{x}-n$ -мерный вектор, составленный из компонент вектора y и его производных: $\hat{x}=\gamma(s)y$. Это уравнение с точностью до обозначений совпадает с уравнением (6.1). Тогда в соответствии с утверждением 4 найдем регулятор

$$(6.22) \bar{u} = K\hat{x},$$

обеспечивающий выполнение требования (6.6) к точности. Отсюда с учетом принятых обозначений получим матрицы регулятора (6.16)

(6.23)
$$G(s) = T_2(s)$$
, $R(s) = K\gamma(s)$.

Таким образом, следствием утверждения 4 является следующее

Утверждение 5. Если матрица K регулятора (6.16),(6.23) получена на основе выражений (6.7), (6.8), где $A = \hat{A}, B = \hat{B}$, а матрица Q удовлетворяет неравенствам (6.9), то установившиеся ошибки системы (6.14), (6.16), (6.23) удовлетворяют требованиям к точности (6.6), грубости (6.17)и времени регулирования.

Для доказательства сравним свойства системы (6.13), (6.16), (6.23) и системы (6.21), (6.22), которая по построению удовлетворяет требованиям к точности, времени регулирования и грубости.

Система (6.21), (6.22) эквивалентна системе с объектом (6.20) и регулятором

$$(6.24) \bar{u} = R(s)y,$$

и поэтому заключаем, что

(6.25)
$$\hat{T}_{yf}(s) = [T_1(s) - R(s)]^{-1}, \quad \hat{W}(s) = -R(s)T_1^{-1}(s),$$

где $\hat{T}_{yf}(s)$ -передаточная матрица системы (6.21), (6.22), связывающая ее выход с внешним возмущением. Она получается из уравнения

(6.26)
$$(T_1(s) - R(s))y = \rho,$$

которое следует из системы (6.20),(6.24).

Из уравнения (6.26) получим характеристический полином системы

(6.27)
$$\hat{d}^{s}(s) = \det(T_{1}(s) - R(s)).$$

Теперь рассмотрим систему (6.13),(6.16),(6.23), эквивалентную системе (6.14),(6.16),(6.23). Нетрудно видеть, что ее передаточные матрицы равны

(6.28)
$$T_{uf}(s) = \hat{T}_{uf}(s), \quad W(s) = -T_2(s)^{-1}\hat{W}(s)T_2(s).$$

Используя правило построения четырехблочной матрицы, получим ее характеристический полином

(6.29)
$$d^{s}(s) = detT_{2}(s)det[R(s) - G(s)T_{2}^{-1}(s)T_{1}(s)] = detT_{2}(s)\hat{d}^{s}(s).$$

Первое из выражений (6.28) означает, что система (6.14),(6.16),(6.23) удовлетворяет требованиям к точности, а второе означает,что $det[E_m+W(s)]=det[E_m+\hat{W}(s)]$ и, следовательно, условие грубости (6.17) выполняется при $r^*=1$. Из равенств (6.29) следует выполнение требования к времени регулирования при соответствующем выборе параметра η в уравнении (6.8).

Доказательство утверждения 1

При полигармоническом возмущении (2.3) выход системы (2.1), (2.2) в установившемся режиме $t \to \infty$ описывается выражением

(II.1)
$$y(t) = \sum_{k=0}^{\infty} a\left(\omega_k^f\right) \sin\left(\omega_k^f t + \varphi_k^f\right),$$

в котором

$$(\Pi.2) a\left(\omega_k^f\right) = \left|T_{yf}(j\omega_k^f)\right| f_k.$$

Учитывая это выражение и условие (2.4), запишем

$$(\Pi.3) |y(t)| \leqslant \sum_{k=0}^{\infty} |a(\omega_k^f)| \leqslant \sum_{k=0}^{\infty} |T_{yf}(j\omega_k^f)| |f_k| \leqslant ||T_{yf}(s)|| \sum_{k=0}^{\infty} |f_k| \leqslant ||T_{yf}(s)|| |f^*.$$

Для выполнения требования (2.12) к точности достаточно, чтобы

$$|y(t)| \leq ||T_{yf}(s)||f^* \leq y_{ss}^*$$

и, следовательно, справедливо неравенство

$$(\Pi.5) ||T_{yf}(s)|| \leqslant \frac{y_{ss}^*}{f^*}.$$

Учитывая, что при условии (4.1) передаточная функция (3.7) принимает вид

$$(\Pi.6) T_{yf}(s) = \frac{m(s)}{\delta(s)},$$

запишем

 $(\Pi.7)$

$$T_{yf}(-j\omega)T_{yf}(j\omega) = \frac{m(-j\omega)m(j\omega)}{d(-j\omega)d(j\omega) + qp(-j\omega)p(j\omega)} \leqslant \frac{1}{q} \frac{m(-j\omega)m(j\omega)}{p(-j\omega)p(j\omega)} \leqslant \frac{1}{q} ||w_{mp}(s)||^2.$$

Отсюда с учетом неравенства (П.5) получим выражение

$$\frac{1}{q} ||w_{mp}(s)||^2 \leqslant \frac{y_{ss}^{*2}}{f^{*2}},$$

из которого следует неравенство (4.6) утверждения.

Доказательство утверждения 2

Рассмотрим выражение (5.5) для функции g_0 . Для анализа входящих в него слагаемых

(II.9)
$$a = \sum_{i=1}^{n} d_{n-i} T^{i} \qquad b = 2 \sum_{i=1}^{n} \delta_{n-i} T^{i}$$

используем выражение их коэффициентов через корни соответствующих полиномов

$$(\Pi.10) d(s) = s^n + \sum_{i=0}^{n-1} d_i s^i = \prod_{i=1}^n (s+s_i), \delta(s) = s^n + \sum_{i=0}^{n-1} \delta_i s^i = \prod_{i=1}^n (s+s_i^{\delta}).$$

Обозначим

(
$$\Pi$$
.11) $\bar{c}_i = \frac{s_i}{|s_n|}, \quad \bar{c}_i^{\delta} = \frac{s_i^{\delta}}{s_n^{\delta}} \quad (i = \overline{1, n-1}).$

Из неравенств (5.6),(5.7) следует, что $|\bar{c}_i| \leqslant 1$, $0 < \bar{c}_i^{\delta} \leqslant 1$ $(i = \overline{1, n-1})$. Используя (5.8), запишем

$$(\Pi.12) \qquad \frac{s_i}{s_T} = \bar{c}_i \varepsilon_1, \quad \frac{s_i^{\delta}}{s_n^{\delta}} = \bar{c}_i^{\delta} \varepsilon_2 \quad (i = \overline{1, n}), \quad \bar{c}_n = 1, \quad \bar{c}_n^{\delta} = 1.$$

Нетрудно видеть, что

$$(\Pi.13) d_{n-i}T^i = c_i \varepsilon_1^i, \quad \delta_{n-i}T^i = c_i^{\delta} \varepsilon_2^i \quad (i = \overline{1, n}).$$

где c_i и c_i^{δ} – числа, определяемые значениями чисел \bar{c}_i и \bar{c}_i^{δ} $(i=\overline{1,n})$. Действительно, при

$$i = 1: \quad d_{n-1}T = \left(\sum_{i=1}^{n} s_i\right)T = c_1\varepsilon_1,$$

$$i = 2: \quad d_{n-2}T^2 = \left(\sum_{i,j=1}^{n} s_i s_j\right)T^2 = c_2\varepsilon_1^2,$$

$$\vdots$$

$$i = n: \quad d_0T^n = \left(\prod_{i=1}^{n} s_i\right)T^n = c_n\varepsilon_1^n.$$

Аналогичные выражения можно записать для каждого произведения $\delta_{n-i}T^i$ ($i=\overline{1,n}$).

Таким образом,

$$(\Pi.14) \quad a = \sum_{i=1}^{n} d_{n-i} T^{i} = \sum_{i=1}^{n} c_{i} \varepsilon_{1}^{i} = a_{1}(\varepsilon_{1}) \varepsilon_{1}, \quad b = 2 \sum_{i=1}^{n} \delta_{n-i} T^{i} = 2 \sum_{i=1}^{n} c_{i}^{\delta} \varepsilon_{2}^{i} = b_{1}(\varepsilon_{2}) \varepsilon_{2},$$

где $a_1(\varepsilon_1)=c_1+\sum_{i=2}^n c_i\varepsilon_1^{i-1}$, $b_1(\varepsilon_2)=2c_1^\delta+2\sum_{i=2}^n c_i^\delta\varepsilon_2^{i-1}$,, и следовательно,

(II.15)
$$g_0 = \frac{1 + b_1(\varepsilon_2)\varepsilon_2 - a_1(\varepsilon_1)\varepsilon_1}{1 + a_1(\varepsilon_1)\varepsilon_1}.$$

Пусть $g_0 = 1 + \varepsilon_g$, и тогда получим выражение

$$(\Pi.16) \qquad \qquad \varepsilon_g = \frac{b_1(\varepsilon_2)\varepsilon_2 - 2a_1(\varepsilon_1)\varepsilon_1}{1 + a_1(\varepsilon_1)\varepsilon_1},$$

из которого следует, что при сколь угодно малом заданном ε_g^* всегда можно найти числа ε_1 и ε_2 , что при любых $b_1(\varepsilon_2)$, $a_1(\varepsilon_1)$ выполняется неравенство

$$|\frac{b_1(\varepsilon_2)\varepsilon_2 - 2a_1(\varepsilon_1)\varepsilon_1}{1 + a_1(\varepsilon_1)\varepsilon_1}| \leqslant \varepsilon_g^*,$$

, что доказывает утверждение.

Доказательство утверждения 3

Для оценки величины g_0 при условии (5.9) утверждения рассмотрим входящее в выражение (5.5) слагаемое

$$(\Pi.18) b = 2\sum_{i=1}^{n} \delta_{n-i} T^i.$$

Обозначим

$$(\Pi.19) \qquad \qquad \mu_i = s_i^{\delta} / s_1^{\delta} \quad (i = \overline{1, n}).$$

Из неравенств (5.9) следует, что $\mu_i\geqslant 1$ $(i=\overline{1,n})$ и, следовательно, $s_i^\delta/s_T=\mu_i\varepsilon_3^{-1}$ $(i=\overline{1,n}).$

Нетрудно видеть, что вследствие положительности чисел δ_i $(i=\overline{0,n})$

(II.20)
$$b \ge 2\delta_0 T^n = 2 \prod_{i=1}^n s_i^{\delta} T^n = 2 \prod_{i=1}^n \mu_i \varepsilon_3^{-1} = 2\mu \varepsilon_3^{-n},$$

где $\mu = \prod_{i=1}^{n} \mu_{i}$ - положительное число, не зависящее от ε_{3} .

С учетом (П.20) запишем (П.15) как

$$g_0 \geqslant \frac{1 + 2\mu\varepsilon_3^{-n} - a_1(\varepsilon_1)\varepsilon_1}{1 + a_1(\varepsilon_1)\varepsilon_1}.$$

Пренебрегая числами $a_1(\varepsilon_1)$ и ε_1 , которые могут быть сделаны сколь угодно малыми выбором малых чисел ε_1 , а также числом 1 при достаточно малых ε_3 , будем использовать выражение

$$\hat{g}_0 = 2\mu\varepsilon_3^{-n}.$$

Рассмотрим теперь функцию возвратной разности (5.4). Заменяя в ней g_0 на \hat{g}_0 запишем приближенное соотношение

$$\hat{v}(-j\omega)\hat{v}(j\omega) = \frac{(\omega^2 + s_T^2) \prod_{i=1}^n \left[\omega^2 + (s_i^{\delta})^2\right]}{(\omega^2 + s_T^2 \hat{g}_0^2) \prod_{i=1}^n (\omega^2 + s_i^2)}.$$

При $\omega = s_1^{\delta}$ получим

$$(\Pi.22) \qquad \hat{v}(-j\omega)\hat{v}(j\omega)|_{\omega=s_1^{\delta}} = \frac{\left[\left(s_1^{\delta} \right)^2 + s_T^2 \right] \prod_{i=1}^n \left[\left(s_1^{\delta} \right)^2 + \left(s_i^{\delta} \right)^2 \right]}{\left[\left(s_1^{\delta} \right)^2 + s_T^2 4\mu^2 \varepsilon_3^{-2n} \right] \prod_{i=1}^n \left[\left(s_1^{\delta} \right)^2 + s_i^2 \right]}.$$

Из неравенств (5.9), (5.6) следует, что

$$\prod_{i=1}^{n} \left[\left(s_1^{\delta} \right)^2 + \left(s_i^{\delta} \right)^2 \right] \leqslant 2^n \prod_{i=1}^{n} \left(s_i^{\delta} \right)^2, \ \left(s_1^{\delta} \right)^2 + s_T^2 = \left(s_1^{\delta} \right)^2 \left(1 + \varepsilon_3^2 \right),$$

$$\prod_{i=1}^{n} \left[\left(s_1^{\delta} \right)^2 + \left(s_i \right)^2 \right] \geqslant \prod_{i=1}^{n} \left(s_1^{\delta} \right)^2.$$

Кроме того, заметим, что

$$\frac{\prod_{i=1}^{n} (s_i^{\delta})^2}{\prod_{i=1}^{n} (s_1^{\delta})^2} = \prod_{i=1}^{n} \frac{(s_i^{\delta})^2}{(s_1^{\delta})^2} = \mu^2.$$

Подставляя эти неравенства в $(\Pi.22)$, получим соотношения

$$(\Pi.23) \qquad \hat{v}(-j\omega)\hat{v}(j\omega)|_{\omega=s_1^{\delta}} \leqslant \frac{2^n\mu^2 (1+\varepsilon_3^2)}{1+4\mu^2\varepsilon_3^{-2(n-1)}} \leqslant \frac{2^{n-2} (1+\varepsilon_3^2)}{\varepsilon_3^{-2(n-1)}} = \left(2\varepsilon_3^2\right)^{n-1} \frac{(1+\varepsilon_3^2)}{2},$$

из которых следует неравенство (5.10) утверждения.

Доказательство утверждения 4

Передаточная матрица системы (6.1), (6.2), связывающая регулируемые переменные с внешним возмущением, имеет вид

(II.24)
$$T_{z\rho}(s) = C (Es - A - BK)^{-1} B.$$

В установившемся режиме

(II.25)
$$z_i(t) = \sum_{k=0}^{\infty} a_i(\omega_k^f) \sin\left(\omega_k^f t + \varphi_k^f\right) \quad (i = \overline{1, m}).$$

Амплитуды регулируемых переменных:

$$(\Pi.26) a_i(\omega_k^f) = \left| \left[T_{z\rho} \left(j\omega_k^f \right) \rho \right]_i \right| (i = \overline{1, m}, \quad k = \overline{0, \infty}),$$

где $\left[T_{z\rho}\left(j\omega_{k}^{f}\right)\rho\right]_{i}$ – i-я компонента вектора $\left[T_{z\rho}\left(j\omega_{k}^{f}\right)\rho\right]$.

С учетом (6.3) запишем

$$\begin{aligned}
\left| a_{i}(\omega_{k}^{f}) \right| &= \sqrt{\left[T_{z\rho} \left(-j\omega_{k}^{f} \right) \rho \right]_{i} \left[T_{z\rho} \left(j\omega_{k}^{f} \right) \rho \right]_{i}} = \\
(\Pi.27) &= f_{k} \sqrt{\left[T_{z\rho} \left(-j\omega_{k}^{f} \right) \right]_{i} \left[T_{z\rho} \left(j\omega_{k}^{f} \right) \right]_{i}} \quad (i = \overline{1, m}, \quad k = \overline{0, \infty}).
\end{aligned}$$

В [11] показано, что при условиях утверждения 4 передаточная матрица ($\Pi.24$) удовлетворяет неравенству

(II.28)
$$T_{z\rho}^{T}(-j\omega)QT_{z\rho}(j\omega) \leqslant E_{m}, \quad 0 \leqslant \omega < \infty.$$

Полагая $\omega = \omega_k^f$, умножим это неравенство справа и слева на векторы

$$(\Pi.29) \qquad \rho_{+}^{(k)} = \left[\rho_{1k}e^{j\phi_{k}}, \dots, \rho_{mk}e^{j\phi_{k}}\right]^{T}, \quad \rho_{-}^{(k)} = \left[\rho_{1k}e^{-j\phi_{k}}, \dots \rho_{mk}e^{-j\phi_{k}}\right]^{T}$$

и, используя (Π .27), получим (Π .30)

$$\rho_{-}^{(k)} T_{z\rho}^{T}(-j\omega_{k}^{f}) Q T_{z\rho}(j\omega_{k}^{f}) \rho_{+}^{(k)} = \sum_{i=1}^{m} q_{ii} a_{i}^{2}(j\omega_{k}^{f}) \leqslant \sum_{i=1}^{m} \rho_{ik}^{2} = \left(\sum_{i=1}^{m} \omega_{i}^{2}\right) f_{k}^{2} \quad (k = \overline{0, \infty}).$$

Отсюда

$$\left| a_i(\omega_k^f) \right| \leqslant \frac{\sqrt{\sum_{i=1}^m (\varpi_i^2)}}{\sqrt{q_{ii}}} |f_k| \quad (i = \overline{1, m}), \quad (k = \overline{0, \infty}).$$

Из выражений (П.26), (П.31) и (2.4) следует, что

$$(\Pi.32) |z_i(t)| \leqslant \sum_{k=0}^{\infty} \left| a_i(\omega_k^f) \right| \leqslant \frac{\sqrt{\sum_{i=1}^m \varpi_i^2}}{\sqrt{q_{ii}}} f^* \quad (i = \overline{1, m}).$$

Тогда из этого выражения и требования (6.6) получим неравенство (6.9) утверждения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Основы автоматического регулирования. (Под ред. В.В.Солодовникова) М.:Машгиз, 1954.
- 2. *Воронов А.А.* Основы теории автоматического управления. Ч І. Линейные системы регулирования одной величины. М.-Л.:Энергия,1965.
- 3. Летов А.М. Аналитическое конструирование регуляторов І-ІV //АиТ. 1960. №4. С. 436-441; №5. С.561-568; №6. С.661-665; 1961. №4. №.425-435.
- 4. Kalman R.E. Contributions to the Theory of Optimal Control //Bullet Soc. Mat. Mech. 1960. V. 5. No 1. P.102- 119.
- 5. Александров А.Г. Частотные свойства оптимальных линейных систем управления. //АиТ. 1969. №9.С. 176 181.
- 6. *Александров А.Г.* Аналитический синтез передаточных матриц регуляторов по частотным критериям качества. Ч.2. // АиТ. 1972.№2.С 17 29.
- 7. Тимофеев Ю.К. Статические ошибки аналитически сконструированных систем //Аналитические методы синтеза регуляторов. Межвуз. научн. сб.: Сарат. политехн. инс. 1976. С. 53-60.
- 8. Садомцев Ю.В. Аналитическое конструирование регуляторов по заданным показателям качества. Развитие проблемы //Аналитические методы синтеза регуляторов. Межвуз. научн. сб.: Сарат. политехн. инс, 1980. С. 32-48.

- 9. Волков Е.Ф., Ершов Н.Н. Синтез асимптотически устойчивых многосвязных систем с заданной статической точностью //AuT. 1981. No 7. C. 19-27.
- 10. Александров $A.\Gamma$. Синтез регуляторов многомерных систем. М.: Машиностроение, 1986.272с.
- 11. Александров А.Г., Честнов В.Н. Синтез многомерных систем заданной точности, I,II// АиТ. 1998,Т.59.No7, С. 83 95,No8,С.124-138.
- 12. Барабанов А.Е., Граничин О.Н. Оптимальный регулятор линейного объекта с ограниченной помехой // АиТ. 1984. Т. 45. No 5. C. 39-46.
- 13. Dahleh M.A., Pearson J.B. l_1 -optimal feedback controllers for MIMO discrete-time systems // IEEE Trans. Automat. Control. 1987. V. AC-32. P. 314-322.
- 14. *Александров А.Г.* Критерии грубости нестационарных систем автоматического регулирования . Межвуз. научн. сб. "Аналитические методы синтеза регуляторов СПИ, Саратов. 1980. С. 3 14.
- 15. Kвакернаак X.,Cиван P. Линейные оптимальные системы управления. М.:Мир,1977.
- 16. Александров $A.\Gamma$. Частотные свойства оптимальных линейных систем с несколькими управлениями. // AuT. 1969. No 12. C. 12 17.