DISCRETE SYSTEMS

CONSTRUCTION OF DISCRETE CONTROL SYSTEMS
WITH GIVEN PROPERTIES

A. G. Aleksandrov UDC 62-508.4

We investigate the properties of a discrete control system, on the motions of which a positive
quadratic functional {s minimized, A relationship is established between the parameters of
this functional and the frequency and accuracy characteristics of an optimal system, Control-

lers are constructed that ensure that the system will have given frequency properties and trans- g
fer constants,

1, Formulation of the Problem

We consider a discrete control system, whose asymptotically stable perturbed motion is degcribed by the equa- J
dons '

z[(k+1)T] = Oz (kT) + Ru(kT) (k=0,1,...), (1.1)
w(kT) = C'z(kT) (k=0,1,..,), w9 |

where x (kT) is an n-dimensional vector of the phase coordinates of the plant; u(kT) i an m-dimensional vector of
the output coordinates of the controllers, described by Eq. (1.2) (the vector u will also be called a vector of the in-
puts of the plant); & and R are known matrices of numbers of dimensions n X n and n x m, respectively, satisfying
the conditions of complete controliability; C* is an m X n matrix (the prime is the symbol of transposition); and T
As a given interval of discreteness, For definiteness, we will assume that system (1.1), (1.2) containg m controllers
each of which is described by the carresponding row of the matrix equation (1.2), P
The margin of stability and the dynamic properties of system (1.1), (1

+2) will be estimated using frequency
performance indices [1]: the phase margin ¢y, the modulus margin L, and the multidimensional system (1.1), (1.2)

We break the system (1.1), (1.2) at the p -th input of the plant, and we feed an action on this input in the 3
form of a harmanic lattice function Yy = —lsinwkT(0sw s 7 /T, k= 0,1,...). The reaction excited by this 3
action on the output of the p -th controller has the form '

uv=A4.(0) sin [0kT + ¢, (o) 1.
The block diagram of system (1.1), (1.2), broken at the y -th input of the plant, is shown in Fig, 1

We use the following notation; the symbol v above a matrix denotes the matrix obtained by deleting the -
th column, K is a matrix of dimension n x (m—1), consisting of m—1 columns of the matrix R, u is an (m—1)-
dimensional vector with components {ug, ..., 4y, Uy t1see0, Um}e

It is known that A, (w) is a periodic function of
quency

Ly 4

peﬂod 2/ T; therefore, as usual, we introduce a pseudofre-

v=tg(al/2),

Ly §
and then ‘as w varies from 0 to %/T, the peeudofrequency v varies from 0 to o,
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Converting in the functions Au(w) and ‘Pv(“’) to the pueudoﬁ-eqmcy v, we obtain the functiom Ay (v) and
E ¢y (v), which are called the ampnmde*-fzequemy and plme-—frequancy characteristics of system (1.1), (1.2), broken
f atthe p-th input of the plant,

; Repeating the procedure described for each of the m tnpnu of the plant, we obuln 2m f:eqnency characteris-
o tes A{(V), 91(V) A = 1,,.., m); by using these characteristics we determine the stability margin of the multidim-
. donal system (1,1), (1.2):

qa.;x-mm{vw,-...,em-}.\L==min{L«-.-'~L-L o 4.9
M=mpx {M,,..., M.},

where the ¢, Ly, My (i =1,..., m) are defined by known equations [1, 21.

4 System (1.1), (1.2) is agumed to be *good* with regpect to its frequency performance indices, if the values
of the numbers ¢, L, and M occur within the limits

o ¢.=30°-60°, L=2-10, M=43- 2 © (L8
Cinymg out a z transformation on systeni (1.1), (1.2) for zero initial conditions, we write the expression for
] the trangfer matrix Wiy (z) of this system in the broken state: ‘

i Wor (3) =—C'(Es—®)~'R. "

The matrix Wpr(1) 1s called the matfx of the transfer commm ofthz system (1,1), (1,2) (for m = 1 the sca~
F 1ar kp = w (1) is called the transfer constant of the synem) It characterizes the values of the static errors of the sys-
F tem for a constant external action,

Larger values of the elements of the matrix Wy, (1) = Iwu(l)l 1} correspond to higher static accuracy of the
.“ " system,
Below we congider the following ptoblem to determine’a matrix C* such that the system (1.1), (1.2) has per-

;-; formance indices occurring within the lmits (1.6), and the values oftho transfer constants wij(1) ({, j =1,...,m)
| satlsfy the inequalities

2 wa()> k> (i=1,...,m), (L9
Jom1 '

' where the ki are given numbers,

Form =1, relations (1.8) can be written in the form kp = k; (k; is a given number).

‘v 2. Frequency Performance Indices of Optimal Discrete Systems

1 We Dext assume that the matrix C* in Eq, (1.9) is obtained as a result of solving the problem of the analyti-
cal construction of controllers of discrete systems [3, 4], This problem is formulated as follows.

Problem 2,1, Let there be a control plant, described by Eq. (1.1). It is required to determine the matrix C*
j of the equation of the controllers (1.2) such that on asymptotically stable motions of system (1.1), (1.2), excited by
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arbitrary initial deviations, the finctional

Im 2.-:' (kT)Qz(kT)+ wen’ (kT) u (KT) @1

is minimized, in which Q is a positive definite matrix,
An analytical and numerical solution of this problem is well known [3, 4] and reduces
ing to the Lyapunov—Beliman method, to the solution of the matrix algebraic equation
(Q+4)-0'(Q+4)0+0'(Q+A)RIR' (Q+A)R - @2

+Ep]~R'(Q+4)0 =0,
where A is an n X n positive definite matrix, E is the unit matrix, and it reduces to the successive calculation of
the sought matrix C according to the equation

C'=—[R'(Q+A)R+Ep]R'(Q + 4) 0. | 2.9 ,'

Equations (2.2), (2.9) are called the algebraic conditions of the optimality of the system (1.1), (1.2). On the

basis of these equations it is not difficult to obtain an optimality expression for the gystem under consideration in
the frequency form, : '

, in particular, accord-

Actually, adding and calculating from the left side of Eq, (2.2) the expression &* (Q + A) z, we obtain after
multlplying this equation on the left by R* (Ez™' —#+)~! and on the right by (Ez—8)“'R.

R(Q+A)3(Ez - 0)-'R+ R’ (Es—* — ') ~'0’ (Q +A)R+
+ R (Es~' — 0') 0’ (Q+ A)RIR (Q + A)R + Epl)X
XR(Q+A)O(Es—®)~'Rm= R (Ez~* — ©')-'Q(Ezs— 0)-R,
On the basis of (1.7), (2.8) we can write

Wy (2)=[R’(Q + 4)R+ Ens]-'R’ (Q + 4) D (Ez — 0)~R. *e
Introducing the notation

H(z)=H(Ez—0)~'R, R (Q+A)R+Ep'=N, HHe Q (2.5
and using the identity z (Ez—&)~! = E + & (Bz—8)~L we obtain /
N+NWy (2)+ Wy )N+ Wy, (s~)NW,y, (s) .= (2.6

= Eps+ B (s-') H(z).

Canying out a w transfamation (z = (1 +w)/(1~w)) in (1.8), and replacing w by jv, we obtain the optimality °
condition for system (1,1), (1.2) in the frequency form

N+NW,, (v)+ Wy, (—jo)N + W, (—Iv)NW,, (jv)= @
= Ep+ H' (~jv) H(jv).
For the case of a single controller (m = 1) the identity (2,7) takes the form (51
M+ wpe (=) 1A + wy, (o) ]=

-(1—¢) [ 1+ps Z h((—iv)hf(iv)], @9 “'

where i-,’
r(Q+4)r i
wFrQ+a)r’ e

ng (jv) (1 =1,..., n) are the components of the vector H(z) = H(Ez~®)"'r, 2 = 2=(1+j)/(1~jv),r =Rform =1,

Equation (2.9) for the coefficient € contains the matrix Q + A, characterizing the value Ioy; of the func-
tonal (2.1) on the extrema (1.1), (1.2). We also have Iopt =x'(0) (Q + A)x(0).
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We investigate the dependence of € on u’, This dependence has a nonexplicit character, since the quantity
'(Q+ Ajr depends on yf, Howeves, if the plant (1,1) is asymptotically stable, then it ig not difficult to show that
for every u ¢ the inequality r* (Q +.A)5 = a is satisfled, where « is a positive number that is independent of 4 2

A consequence of the boundedness of r* (Q + A)r is the relation
‘ ' e=0 @ pero, 3 (2.10)
We describe the frequency properties of the optimal discrete systems with a single controller,

<Fheorém 2,1, If system (1.1), (1.2) with scalar control and asymptotically stable plant (1,1) is optimal in the
sense of the functional (2,1), then for its frequency performance indices the following estimates hold:

8) @, = 60° — e:, b)) L >2— ey, _c) < 2 + &3, A (2.11)
in which the pasitive numbess &1, &4, and &, are such that for any numbers e{’s3, and &} given beforehand, there

always exists a sufficlently large number 4, stich that

84 < a“. » o ‘ C (2012)
Proof, We represent the identity (2.8) in the form \
1+2Re wg, (jp)+ Re! w’b, Gv)+ I,:wb, (Jv)= (2.13)

=1-¢+(1—e) u:‘ 2 M(-y—jv)ﬁ;_(jv).

fomf

Taking into accouttt the relation : - L
e<t, 3 h(-w)h(v)>0, ' 2,14
’ foul ‘ )
we obtain
[Ro wyy Gv)+1]* + Loy, Uv)> 1 —e. (2.15)

The equality [ wp, (3v) + 13 + 12, Wi (Jv) = 1— & corresponds to a circle of radivs v T— ¢ with center at
the point

Re wy, (jv) = —4, L.y, (jv) =0. (2.16)

\
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THis circle is the boundary of the disk forbidden for the amplitude —phase characteristics of the optimal sys-
tem (L.1), (12). '

We first congider the limiting case ‘

e =0, ' (2.17

The forbidden disk that corresponds to this case s noted in the hodograph plane of the amplitude —phase char-
acterigtics, shown by hatching in Fig, 2. On this figure the circle of unit radius with center at the coordinate origin
is shown, It is not difficult to see that the arc [~120° + 2¢x, ~240° —~ 2y 7} (¥ = 0, 1,...) of the latter circle, and
also the segment [~2,0] of the real axis, occur inside the hatched disk of the forbidden zone. The latter fact indi-
cates that _ : _

0=60°% L>2. (218

In order to determine the boundary of the cscillation index, we write

M = max M (v), M(v)= VRe* vy (10) + Bawpy () .
VIt + Rowny (o)1* + Fraos 10)

ISr<o

(2,19

Squaring the last equation and eliminating the denominator [2], we obtain after algebraic transformations

¢ M) 1, [ M@ 1t
[Rewbt(jv)+m] +Imwbr.(]v)_[m . (2.20)

Let M(v) = const = M; then the last equation describes a circle of radivs r = N/ N?-1 with center at the
point (—a, §0), where a = M/M*—1, being the geometrical position of the points farbidden for intersection of the
amplitude—phase characteristics of systems with oscfllation index M < M, In Fig. 2, by a dot-dash line we plot the
circle corresponding to M = 2 (r = 0,66, a = 1,38), which occurs ingide the hatched disk, and, hence

o M<2 = | “4(2.21)
The analytical proof of inequalities (2.18) and (2.21) is presented in [6].

In the fundamental case (¢ # 0) the radius of the disk forbidden for the amplitude ~phase characteristics of
the optimal system decreases with increasing €, and therefore the boundarfes of the frequency perfarmance indices
fall outside the limits indicated by the inequalities (2.18) and (2.21). In tlds case the boundaries of the frequency
performance indices can be described by expressions (2.11), Taking account of (2,10), we conclude that with in-
creasing 1§ the boundaries (2,11) converge to the boundardes (2.18) and (2.21), which also proves Theorem 2,1,

We now generalize this theorem to the case of systerns with m conu-ol;eis (mz1),
We represent system (1,1), (1,2) in the form of the m fonéwing eqiﬁvélent systems:
21k +1)T1 = [© + RC1 2 (kT) + Ry (KT)  (1=1, ..., m), 2.29)
w(kT) = Cre (RT) (i =1,..., m), 2.29)
and we consider the y-th system. (The symbol [{] indicates the i-th column of the matrix,)
Taking into account the optimality of system (1.1), (1.2), we write, on the basis of (2,3),

v | o .9 |
C'=—{RIE@ T R(Q+ AR + 4) 0, (2.24)
Coa = — {R [Epg -+ R’ (Q + A) RI™(9(Q + 4) ©.

The transfer function of system (1.1), (1.2), broken at the y-th input of the plant, has, in conformity with
(2.22) and (2,293), the form

w, (2) = {II? [Bua+R(Q+ AR ™MW@+ AP X (2.25)
| . v |
X [Ez— @ + R {R(Ep + R (O AR (Q + 4) O] Ryy.
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We consider the following auxillary problem, ,
Problem 2.2, Lt there be a cantrol plant, described by the equation

{ z[(k+1)T] = ©°z(kT) + R°u*(kT), (2.26)
; where . )

) v vl y §
=0+ RC =0~ R{EQFR(QFARTY (Q+ 4D, B = Ry,
It is required to determine the controller equation ’
i w*(kT) = 'z (kT) ‘ @.27

L such that for asymptotically stable motions of system (2.26), (2.27), excited by arbitrary initlal deviatloos, the fol-
lowing functional is minimized: '

I= iz’ (KT) Q" (kT) + p3u"* (kT), (2.28)
ko ’

where

.

Q"= Q -+ = + pd0 (Q + 4) x

] v i v
x \RER TR Q@ F AR HEERF R QTR (Q + 4) ®.

Let this problem be solved. It turns out that the following equation holds:

(QH+A) = (Q+4), =cop @.29

The proof of these equations (a similar proof of the corresponding relations for continuous systems is presented

in [7D, which, in principle, is complicated, appearsin a:relatively large number of works and therefore will not be
presented here, ’

& transfer function

* .
1, (5) = — " (B2 - O] R @3

of the optimal system (2,26), (2,27) in the broken state satisfies the identity
[$+wy; ) 11+ wp (5)] - (2.81)

-(— é') .[1 +ue 2 b (z~)h/ (3) ,].
oy - :

where the h{ (z) d = 1,..., n) are components of the n-dimensfonal vector

H' =H(E-Q)"R, H'H =@,

RQ+4IR
w+R(Q +4YR’
Using Eq. (2.29), we conclude on the basis of (2.25) and (2,30) that
w;r (8)=w,(z). | ‘ (2.32)

*

Furthermare,

R(vl.(g +A)Rt'! .
P«: + Ry, (Q + 4) Ry,

8 gy =

Taking account of (2,32) we write. the identity (2.31) in the form
| [1+w,(s-) {1 + w,(s) ] = (2.38)
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=(1—se,) ri +pe 2 h _(z;‘)h«' (3) ]

It is not difficult to verify that

& =+0 a plg - (2.34)
Repeating for (2.33) the proof of Theorem 2.1, we obtain estimates of the form (2.11),
What has been discussed above holds for all ¥ from 1 to m and thus the following theorem is proved,

Theorem 2.2. If the control plant (1.1) of the system (1.1), (1.2) which is optimal in the sense of the func-

tonal (2.1), is asymptotically stable, then for frequency performance indices of this system the following estimates
hold:

2) op>60°—eyq, b) Li>2—ey c) Mi<2+e,
(l=1,...,m), |
in which the numbers €4, &,4, and &si (i = 1,..., m) are positive and vanish for sufficiently large values of u3,

8. Matrix of Transfer Constants and Frequency Performance Indices

(2.35)

of Optimal Systems

Taking account of the boundedness of the matrix A, we can write the identity (2.6) for sufficlently large p}
in the form '

[E+ W )V [E+ Wy (2)1=E+pe H (s H(s). 3.1
Assuming z = 1, we obtain the reladon :
[E+Wy DYIE +Wor (DI=E+p, H (1)H(1). ' (3.2
For m = 1 this relation has the form e
(1+k,)*=1+p.,"2w(1). 8.9
fomt .

It follows directly from (3.2) or (3.8) that a sufficiently large value of the parameter 3 (necessary for guar-
anteeing, in conformity with Theorems 2.1 and 2.2, sufficiently good performance indices characterizing the dy-
namics of the transition process) corresponds to small values of the matrix elements of the transfer constants, In
connection with this conwradiction between the required static accuracy of system (1.1), (1.2) and the performance
indices characterizing the dynamics, we consider the following problem,

Problem 3.1, Let there be a system of equations
[ (k+1)T] = Oz (kT) + Ru(kT), 3.4
F[(k+1)T]=(1 1, )2 (kT)+ ¢, Dz (kT), 3.5 |

where X (kT) i3 an r-dimensional vector (r=n), t, g> 1, D1s the matrix of the numbers of dimension r X n, satisfy-
ing the condition 1

rank||D’(DP’ ... (DP**)’]| =n. 3.6 1
It is required to determine the control 3
u(kT) = C'z(kT) + C'Z(kT) @ ]

such that on solutions of the system (3.4), (3.5), (3.7) the following functional is minimized:

I= 2 # (RT)QE(RT)+u’ (RT)u(RT). 3.9
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This problem and its solution differ from Problem 2.1 only in the dimensions of the vector x.
Actually, introducing the notation ‘

rilal @ | |
z = = DE(i—t;a @9

n{|R n{jo00 1
= {H’ 0=, ooll'

. we solve Problem 2.1, in which Eq. (1.1) and functional (2.1) have the form

Z[(k+1)T} = OF(KT) + Ru(kT), (3.10)
1= Viz' (D) Q2D+ 0’ RD)u(hT). | @.11)
{uat : . ’
As a result of the solution we obtain
u(kT) = 'z (kT), (3.12)
where v .
' = IIC'C’ il. - (3.13)
The matrix of the transfer constants of thn optimal system (3,10), (3.12) has the form x
Wy (8 =—C'(Ez— ®)~'R : (8.19)
F and satisfles the identity i
,, N+NW, )+ Wy YN +W,, c)NW,, (2) (3.15)
1 % =E+H (z)H(3),
E  where '
i N=R(3+A)R+E. : : (3.16)
, We express the matrices that appear in (3,16) and (3.16) in terms of blocks of the mauiceo o R and 4.
| Using (8.9), we obtain
b @)t
:;, _ = - (Ez b 0)
(B8~ = t,;‘D(Ez—m)-* (a1t~ E(z—1+tf.‘ ) N
' — (Ez —®)-'R
—— -0 C o
(Ez—0)"'R " ty (5—1+1, )~'D(Ez — ®)-'R "
H'(s)H (z)= R’ (Ez — ®)—'D’Q,D(Ez — ®)—* X (3.17)
XRity (2— 1+, ) (3= — 1+ ;1)1
Wi (3)=—C (Ez— ®)'R — @19

—C'ty (2 —1+1t,')"D(Ez — ®)-'R.
Representing the matrix A {n the form

A= " 4,y A,

4
A,, Agg "! Al! i Alh

we obtain
N == R’A“R + E. (3.19)
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The following relation holds:

A,~[0] a8  glwo, (3.20)

using this we can write (3,15) in the form
[1+ Wr Y1+ Wbr (z)I=~E+H (z7)H (). 8.21)
It is not difficult to verify, repeating the fundamental propositions of the proofs of Theorems 2.1 and 2,2, that

the frequency performance indices of system (3,10), (3.12) satisfy the inequalitites (2.35), in which the numbers € i
(i=1,2 3;i=1,...,rn)gotozerowithincreasingtlg. .

The rigorous proof of relation (3.20) is rather cumbersome and therefore will not be given here,
Remark,  We present an intuitive explanation, conflrming the validity of the relation (3,20),

The *artdficial" plant (3,10) differs from the *real” plant (3.4) by the presence of r inertial sections (3.5).
Wwith increasing inertia of these sections (with increasing parameter t, g) the effect of the vector x (and, in particu-
lar, it initial values) decreases for processes based on the vector ¥, and the matrix Ay characterizes the weight of

the vector x(0) in the minimum value of the functional (3.8), since Iopt = x' (0) Agyx(0) + =’ (0) A1,2(0) +
# (0) A42(0) + 3/ (0)A22%(0).

We now eliminate the vector (kT) from Eq. (3.12), wsing (3.5)., Then
1(z) = — (& + 't (s — 1 + =) D] (z). (3.22)
We investigate the properties of the plant (3.4), closed by the controller (3.22).
The transfer matrix Wy (2) of system (3.4), (3.22) has the form
W (3)=—[C" + Ct;;' (z— 1 +1t')D] (Ez — ®)-'R. (3.23)
Comparing this matrix with (3.18), we conclude that
Wy (5) = Wi (2). (3.24)
An almost obvious consequence of this identity {s the relation
Wi(z) =By (z) (i=°,...,m), .25

where Wy(2z) and Wi (z) are the transfer functions of the systems (3.10), (3.12) and (3.4), (3.22), respectively, broken

with respect to the i-th input of the plant, The identity (3,25) indicates agreement of the frequency performance
indices of these systems,

Using (3.17) and (3.24), based on (3.21) we write
[E+ Wy G)VIE+ Wy (3)] (3.26)

=E+R(z)A@) {t " (7 — 1+ ) (2 — 1+ Y)Y,
where T(z) = HyDEz—~®)"'R, HH, = Q. '
For z = 1 we obtain
[E + W, DVIE+W, D]I=E+A(1)A). (3.27

Thus, choosing in Problem 3.1 sufficiently large values of the parameter tig and the elements of matrix Q,,
we obtain controllers that guarantee given performance indices for the system (3.4), (8.22).
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