DETERMINATE SYSTEMS

PROPERTIES OF ANALYTICALLY CONSTRUCTED
LINEAR SYSTEMS

A. G. Aleksandrov UDC 62-50
Frequency and transient properties are investigated for systems whose controls are obtained via
known analytical construction algorithms. A set of properties is established for such systems,

where the set does not depend on the choice of the coefficients in the nonnegative optimization
functional.

1. The Problem

The wide-ranging possibilities in the analytical approach to control synthesis developed in the last decades
haveattracted the attention of engineers designing controls for actual systems.

In many cases, and in particular for complex multidimensional systems, this approach is eminently feasible.
But its application is often difficult, due to the well-known problem of the selection of the coefficients in the
optimization functional used in the mathematical description of the nature of the control. On the other hand, prac-
tical control synthesis usually is achieved through quality frequency characteristics, and also through qua lity char-
acteristics of the curve of the transient process [1, 2].

Thus it is important to establish the boundaries of the above quality characteristics for analytically con-
structed systems, where these boundaries do not depend on the choice made for the coefficient in the optimization
functional, This article investigates such properties.

«*»Suppose we are given a control system whose perturbed motion is described by the following equations, in a
first approximation:

z=Pz+Bu, (1.1)
u=C'z, 1.2)
where x is the n-dimensional phase coordinate vector for the object, u is the output variable of the regulator (the

control), P, B are given real matrices of dimensions nx n and nx 1, respectively, and they characterize the con-
trollable object completely, C is an n-dimensional column vector, and the prime denotes the transpose operation.

The problem of analytical construction of controls was formulated and solved by Letov in 1960 [3]; it con-
sists of the determination of the vector C such that in asymptotically stable motions of the system (1.1), (1.2) per-
turbed by arbitrary initial deviations the following functional is minimizeds

I= j (z'Qz+u?)dt (1.3)

for the given nonnegative definite mawix Q,

The mawix Q can be written in the form Q =H'H, where H is a matrix of dimensions rx n (r is the rank of
the matrix Q), It is assumed further that the matrix H satisfies the condition
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The procedure for solving the analytical construction problem for controls, called below Procedure 1, con-
sists, as is well known, of two operations; first solve the equations

A(x)p+PlAu)_A(i)BB'A.(:)+Q=O (1'5)
and then calculate the desired vector C from the formulas
C=C"=—A"p, (1.6)

where A isa positive definite symmetric nx n matrix. In 1967 Krasovskii [4] proposed a computational improve-
ment to Procedure 1,

In this case, the object is assurned asymptotically stable, and the functional (1.3) contains the additional
terms

in which the positive definite quadratic form V, = x'A(?)x is the solution of the linear partial differential equation

[ 8 rn] - S
=t e

1, joumt

The known procedure for solving the analytically constructed control problem in this case still consists of two
operations: first solve the equations

APP+P AP +Q=0 a.m

~geet

and then calculate the vector
C=C?=—4® B, (1.8)

where A(®)is a positive definite symmetrix nx n matrix.
This sequence for operations will be called Procedure 2,

We note that equations (1.5) and (1.7) coincide formally, if in place of the mawix Q in (1.5) we put the
matrix Q—A{t)p A ),

Here and in what follows below the upper indices (1) and (2) attached to matrices, vectors, and scalars denote
the number of the Procedure from which the matrices and scalars arise,

Procedures 1 and 2 use the nonnegative definite matrix Q.

The aim of the following sections is an investigation of the frequency and transient process properties of sys-
tems of the form (1.1), (1.2), whose regulators (1.2) are obtained from Procedures 1 and 2 where the properties are
not to depend on the choice made for the elements of the nonnegative matrix Q,

2. Frequency Properties of Analytically Constructed Systems

First we quote the definition of the wansfer function of the system (1.1), (1.2) in its open state, and then we
establish the relations between the transfer functions of this system with matwrix Q for the cases where the control
(1.2) s obtained through Procedures 1 and 2. These relations are basic for the investigation of the frequency prop-
erties of analytically constructed systems.

As transfer function for the system (1.1), (1.2) in the open state we may take the function relating the Laplace
transform of the output variable u of the control and the disturbance r fed into the input of the object instead of this
variable. The system (1.1), (1.2) is described in this case by the equations sx = Px + Br, u = C'x (s is the symbol for
the Laplace transform under zero initial conditions),
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It follows from these equations that x = (Fs-P)“Br, andu = C'(Es— P)‘lBr and, so that
W op(s) =—C’(Es—P)~'B. (2.1)

Suppose the vector C in (1.2) has been obtained through Procedure 1. Then in this case the relation between
the transfer function of the system (1.1), (1.2) and the matrix Q is well known [5]. This relation is called (when
s = jw) the optimality condition infrequency form, and is

[1+w“’ (s) 11+ wiop(—s) 1=1+H' (—s) H (s), (2.2)
where
H(s)=H (Es—P)~'B, w'gp(s)=—C’ (Es—P)~*B.

Let us now introduce the analogous relation for systems whose control (1.2) has been obtained from Procedure

2. Let us add and subract from the left side of (1.7) the term sA(?), and then let us premultiply this relation by

B'(~Es—P)~! and postmultiply it by B(Es—P)"!. ThenB'(—Es—P) ' [(—Es—P) —A®)+A®)Es—P)] (Es—P)"! B =
B'(—Es—P)~1H'H(Es—P)~!B.

Using (1.8) and (2.1) we get the identity

wop(s) +w op(—8) =H' (—s) H (s). @.3)
With s = jw we write
w (i) Twip (—je)=H' (~je)H (o). @.4)

This identity for all real w can be called the optimality condition in frequency form for the system (1.1),
(1.2) in the sense of the functional

| | I= n{xQ:rI- [Z%b;]z+u’}dt.

Let us now investigate the frequency properties of analytically constructed systems through the identities
(2.2) and (2.4).

Theorem 1. The hodograph of the amplitude-phase frequency characteristic of the system (1.1), (1.2) whose
control is obtained through Procedure 1, for an arbitrary nonnegative definite matrix Q, does not intersect the zone
bounded by the circumference of the circle of unit radius centered at the point (—1, j0).

This means that the frequency qualitative indices of this system (phase range ¢, modulus range L, vibration
index M) satisfy the inequalities

p=60°, L=2, M<2. (2.5)
Proof, Write (2.2) with s = jw in the forms
[1+Re wgp () 1* + Im? wop (o) = 1 + 2 hi(=jo) hi(jo), (2.6)
fmmy

where hy(jw) (i = 1, ..., n) are the components of the vector H(jw) = HEjw—P) 1B. It is obvious that

Z hi(=jo)hi(jo) >0, 2.7
oy
and therefore
[1+Re wp (j) I* + Im* wop (j0) > 1. (2.8)
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Fig. 1

To the equation [Re wgg (w)+11% + Imzwé;) (jw) = 1 there corresponds the circumference of the unit circle
centered at the point Re wgg(jw) ==1, Imw(()‘g (jw) = 0, in the Re wop(jw). Imwop(j w)plane, and therefore the first
part of the theorem s proved,

This circle of unit radius which lies in the forbidden zone for the amplitude-phase frequency characteristics
o'he systems (1.1), (1.2) obtained through Procedure 1 is shaded in Fig, 1.

The geometrical figures of Fig. 1 make verification of (2.5) easy.

In fact, the forbidden zone includes the following; the arc K40,K (characterizing the stable phase range) of
120°, since the triangles 0,0K and 0,0K, are equilateral; the circumference corresponding to the vibration index
M =2; and the interval [-2, 0] on the real axis. We note that this last implies that the modulus range for systems
with amplitude-phase frequency characteristics of the second kind is not less than two, and for systems of ghe first
kind is infinitely large.

The analytical basis for the properties (2.5) is glven in [6].

Theorem 2. The hodograph of the amplitude-phase frequency characteristics of the system (1,1), (1.2) whose
conwol (1.2) is found through Procedure 2 does not leave the first and fourth quadrants of the plane

Rewop(jo), Imwop(jo)
for any arbitrary nonnegative matrix Q,

This means that the qualitative indices of the system (1.1), (1.2) satisfy the relations;
Pr=90°, L+oo, M<1. (2.9)

Proof, Write (2.4) in the form;

2 Re w::l;(im)= Z hi(~jo)hi(jo).

Using (2.7) we get the inequality:
2Re wap (jo) > 0, (2.10)

from which follows the assertion of the first part of the theorem.

To prove the first of the relations in (2.9), we write (2.10) in the form 2A(0W)cosp@w) 2 0. Now using
A®way) =1 we get c0s¢(2)(wav)= 0. ,
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- This means that the phase range of the system (1.1), (1.2) is not less than 90°,
The second inequality in (2.9) is obvious.

The last of these inequalities is proved as follows: we recall from [2] that

M= max | 20RO
scoss | 1+wop(jo)

Write this relation in the form M? = max M%(w), where
0sSw =w

- M (0)= Yop (j@) wop(—im) : )
[1+wop (jo) 1[1+wop(—jw) ]

In the case under consideration wop(ju) satisfies (2.4) and therefore

M2 (o) A% (o) AV )
©®) = 3 . * o bd
1 wp (o) Gy (i) +ATO T S b o) 49 (@)

i=1

From (2.7) we conclude that M =<1,

We note that the proof of the properties given in these theorems comes from the inequalities (2.8) and (2.10)
which do not contain the matrix Q; therefore the given properties hold for all nonnegative definite matrices Q.

Let us now investigate the properties of transfer functions in the optimal system (1.1), (1.2) for the unit step
disturbance r(t). This disturbance excites various transient processes depending on where r(t) is applied and which
variable is investigated.

By a transient process in the system (1.1), (1.2) we mean a process in the variable u(t), a process perturbed by
a unig action applied to the object input. Moreover, for the particular case of the object (1.1) with scalar output
y =X and X, = §, ..., x3= y(®1), we shall take a transient process in the system (1.1), (1.2) to be a process in the
variable y(t) perturbed by r(t) applied to the input of the control.

The transient processes being investigated are determined by the nature of the real frequency characteristic
of the closed system R(w).

Corollary 1, If the control (1.2) is obtained through Procedure 1, then
2>R“’(m)>0. (2.10")

Usually R(w) is a continuous function with a single extremum, a maximum, and the amplification coefficient
{f the open system fs Kp= w‘gg (0)> 1. In this case (2,10') implies that the overshoot in the system (1.1), (1.2) does

not exceed 136%.
Proof. If we put

wop (Jo) [1+w,, (—jo) ]
[+wop (o) 1 [1+wop(—je) T’

we (jo)=

we get

_ Rewgp(jo) +4* (o)
HtwepGo) T

R(o) (2.11)

Rewrite (2.2) in the form Re wég (jo)= —;— [ 2 hi(—jo)h;(jo) —A(m.(m)] and eliminate Re Wop(jw) from

famt

©.11) we get R(Ow) = o,
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From thelast of the inequalittes in (2.5) we conclude that R(hw) < 2,

To estimate the value of the overshoot 0%, we use the well known 1] formula o< {[1.18Rm = R(0)]/R(0)}
If we take account of the fact that R(0) = wg)(O) =w o;’(0) 5% +w((:)(0)]. wegetos= 2.36/KP+ 1.36. Using Kp =w°p(0
>> 1, we geto = 136%. P

Corollary 2, 1f the control (1.2) 1s found through Procedure 2, then
1=R®(w)=0. (2.12)
If there s no extremum in the characteristic R(%Xw) then the overshoot g < 18%,
In fact, from (2.11) and (2.10) we may conclude that R(z)(w) =0,
From the last inequa lity of (2.9) it follows that R(2) (w) =1, and the formula for o implies that o=<18%,

3. Properties of Multidimensional Systems

Suppose that the matrices B and C in the system (1.1), (1.2) are of dimension nx m, For convenience we
shall say this system is one-dimensional for m =1, and multidimensional for m > 1. The synthesis procedures 1
and 2 also work for this more general case, We write the multidimensional system (1.1), (1.2) as a one-dimen-
stonal one of the following form.

ve
&=[P+BC’)z+B.u., 3.1)
u,=C'g, (3.2)

v
where Br, 7 is the p-th column of the matrix B, C'[v]1s the y-th row of the matrix C','F is a matrix of dimensfons
[U] v

RX (m-1) derived from the mawrix B by deleting the y-th column, and @ is the matrix of dimensions (m~1)xn
derived from C'by deleting the v-th row, ‘

The object (3.1) is this object closed by all controls except the y-th, The wansfer function of the system

(3.1), (3.2), in accordance with the expression (2.1), has the form; @
Wy (s) =—C’'™ (Es—p) =By, (3.3)
AN

where P* = P+BC", This transfer function is called [7] the wansfer function of the system (1.1), (1.2) open at the
v-thinput of the object 1.1).

In the relations (3.1) through (3.3) the parameter y can take values from 1 through m,

Thus the multidimensional system (1.1), (1.2) is characterized by m transfer functions of the form (3.3).

Each function wy,(jw) has its corresponding A, (w) and #zy(w), and these can be used to obtain Pzys Ly My,

Thus the multidime nsfonal system {s characterized by 3m values ®zi» Ly Mj (d =1, ..., m).

Suppose the matrix C of the control (1.2) is found from Procedure 2. Close the object (1.1)m by one of the
equations obtained and consider the following system;

£=P®'+B,u,, (3.4)
Cuy=C"z, (3.5)

vy, . yy
in which p®)* = p,'TCC) = P~BB'A®), and C* 15 some n- dimensional vector determined by Procedure 2 when
Q = Q*, p=p(2)s,

Lemma. There always exists a fonnegative mawix Q* such that the equation \}
AP L@ ger e @-6)

has the solution A* = A(?)| where A(2) 15 the solution of equation (1.7), and therefore

C"=—A'B,=—ADB,, =C®'™, @.7
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U v
Proof, We show that Q*= Q+2C @JC @', In fact, if we substitute in (3.6) the expressions for the matrices
E— i3 Z, vy vy,
P®)* and Q* and use the fact that ()= ~A®)B, we get A* [P~BB'A®) 1+ ' —A CJEE1A* =—Q—-24CVpEA(D),
When A* = A(%), this equation coincides with (1.7), and this proves the assertion of the lemma.

From the Lemma we can conclude that the one-dimensional system (3.4), (3.5) has the frequency properties
described in Theorem 2 when C*' = C{?)'[V], and the transient processes in this system satisfy the estimates of
Corollary 2. The analogous assertion has been proved in [7] for the case where the matrix C is obtained through
Procedure 1.

Thus the qualitative frequency indices of the muitidimensional system (1.1), (1.2) whose control (1.2) is
found through emitter Procedure 1 or 2 satisfy respectively the inequalities ¢zi 2 60°% Lj = 2, and the maximal de-
viation in the varfable Mj =2 (i = 1,..., m), ¢z{ = 90°, Li—=, Mj= 1 (i =1, ...,m) under unit perturbation r(t)
applied to the v-th input of thé object together with the control u,, does not exceed 2,36 and 1.18 respectively,
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