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1. INTRODUCTION

Two branches of adaptive control theory may be ex-
tracted. They are distinguished by assumption about
external disturbance.

The latter is absend [1] or a “white noise” [2] in the first
branch which has large history connected, in particular,
with the model reference adaptive systems and making
use of the least squares techniques. The last survey of
this branch is given in [3].

Since early 80’s the second branch where disturbance is
unknown-but-bounded is developed. A maximal ampli-
tude of an unknown disturbance for which takes place
the bounded processes in model reference adaptive sys-
tems has been obtained in [4]. The method of adaptive
control based on the recurrent targeted inequalities has
been supposed by [5] [6] for plant in the presence of un-
known bounded disturbance. Least squares estimation
algorithm with deadzone was used in [7] for solution of
the same problem.

A number of adaptation algorithm originated from a
notion of the frequency domain parameters [8] were
proposed in [9]-[11]. These parameters are found by
experiment in which a plant is excited by a test signal
in form of a harmonics sum (with minimal quantity of
harmonics: p = n, where n is a plant state space di-
mension) multiplied by e (A > 0) and plant output
multiplied by e~**. It allows on the one hand to de-
velop frequency domain approach for an unstable plant
and on the other hand to prove convergence to the true
coefficients of plant or controller in the presence of any
unknown-but-bounded disturbance. However, a grow-
ing test signal creates [12] a problem for a bounded
input of plant.

In this paper a stable plant excited by the test signal

under A = 0 is considered. An adaptation algorithm
and conditions of its converge is obtained.

2. PROBLEM STATEMENT

Consider a completely controllable and asymptotically
stable plant described by the following differential equa-
tion

Y1y oyl u O houtf, 1310, (1)

where y(t) is a measured output, u(¢) is an input to
be controlled, y®) , ) (z =T1,n, j= W) are the
derivatives of these functions, f(¢) is an unknown-
but-bounded disturbance. The coefficients d; and
k; (z =0,n—-1, j= W) are some unknown num-
bers, n is known, v < n — 1. The initial conditions
¥ (o) (z = m) and disturbance f(t) satisfy the
following inequalities

WOt < &, i=0n—T1 (2
lfO < 1, (3)
in which &} (i: 0,n— 1) and f* are numbers.

The plant input is formed by the following controller
with the piecewise-constant coefficients
gg]_lu(”_l) +.. +gg] u:rg]_ly(”_l) +.. +7~g]y+v[l] ,
tig<t<t;, uP(t_)=0 i=1N

(4)
where 1 (z =1, N) is an adaptation interval number,
the time of ending adaptation intervals ; (z =1,N
as well as numbers gg] , rg] (k =0,n—1, i=1,N)
are found in an adaptation process,

q
()= ppsinwp(t—tia), ta<t<t; i=1LN
k=1

(5)



are the test signals with the test frequencies wy > 0
and amplitudes pg (k = m) .

On some of adaptation intervals, in particular, under
i = 1, the differential equation (4) has a simple view

wu=20ol1 i€l N ©)
(that is gg]:rg] 0 (k:l,n—l), g([;]zl, r([;]zo),
In those cases test signals (5) contain n harmonics
(¢ =n) and in remaining cases ¢ = 2n.

Systems (1), (6) and (1), (4) will reffered to as the open
and closed-loop systems correspondly. The plant inputs
of these systems are denoted as y.p, and y. . Under

ol =0 (i € T, N) they are denoted as yf and yfl .

The amplitudes of test signal (5) have to meet the fol-
lowing demands of “small excitation”

max
to<t<tn

<& (7)

<§, max
- to<t<tn

Yel — yZl

Yop — ygp
where £ is a given number. These demands may in-

clude the analogous inequalities for plant inputs.

In this paper ways of amplitudes tuning provided these
demands are omitted and it 1s assumed that amplitudes
pr and frequencies wy (k = I,—n) are specified.

In the moment time tx when adaptation process is
ended controller (4) has the following form

Gt gou=r g oy, t>tn, (8)
where g = gECN] , Th = rECN] (k =0,n— 1) .

The characteristic polynomial of system (1), (8) is
p(s) = d(s)g(s)—k(s)r(s) = pan—15"" 1+ - 4o (9)

where d(s) = 8" + dy_1s""t + - + do, g(s) =
gno15" L4t g0, k(s) = kysT + o+ ko, r(s) =
rn—lsn_l +---4+7r9.

Problem 2.1 Find a adaptation algorithm of coeffi-
cients of controller (4) such that the characteristic poly-
nomial of system (1), (8) and a specified Hurwitz’s poly-
nomial

V(s) = Yan_15" 7+ g (10)

meet the following demands
i — il <ef i=0,2n—1 (11)

where 6?1 (z =0,2n— 1) are given numbers ]

3. PLANT IDENTIFICATION
3.1 Frequency domain parameters (FDP) of plant.

On the first interval the plant (1) is excited by the test
signal (6). That is

u(t) = ol(t) = prsinwi(t —to). (12)

A set of 2n numbers ai and G (k :1,_71) 1s called
[8] the frequency domain parameters (FDP) of plant. Tt
connects with its transfer function w(s) = k(s)/d(s)
as

ar = Rew(jw), B =Imw(jwy) k=1,n(13)

If the plant output y(t) = yop(t) is applied to Fourier’s
filter then their outputs give the following FDP esti-
mates

trp4+T
ap =« = — t)sinwyg (t—tg) dt
k=ay(T) P y(t) sinwy (t—to) B
tt;+7 k=1n,
2
Br=0k(1) = — y(t) coswi(t—to) dt
PET

(14)
where 7 is a filtering time (duration of an inter-
val), tp is a filtering start time, the test frequencies
Wk (k = I,_n) are multiple some basic frequency wy :
Wi = qpwp Where §i (k = I,_n) are positive integers,
filtering time 7 is multiple a period 7, = 2T

wp
3.2 Frequency equations of identification.
Consider identity
wljw) = k(jw) /d(jw). (15)

It follows the equations

k(jwr) = (ak+7 Bk ) d(jwr)=(ar 4B ) (jwr)" k= 16”)
1

where J(s) =d(s)—s=dp_15" "1+ +do.

If plant (1) is completely controllable and the frequen-
cies wy (k = I,—n) are positive and different then sys-
tem (16) has the unique solution k; , d; (z =0,n— 1) ,
(kn1="--=ky1=0). [8]

Rewriting system (16) in more detail form and sub-
stituting FDP of their estimates the following system



referred to as the frequency equations of identification

[10] is obtained

Z:_:]% ]Wk O‘k‘i']ﬁk);g(jwk)i = (17)
= (k4 jB)(Jwr)” k=Tn

3.8 Algorithm.

The first interval duration 7 = ¢7; 1s found by the
following necessary conditions of identification conver-
gence

|di(qTp) — dil(q + 1)T5)]| <ef i
ki(qTy) = kil(a + DT < ef g =

where Ef»l, ek

; (z =0,n— 1) are given numbers.

Algorithm 3.1 (finite-frequency identification):

e apply output of plant (1) exited by the test sig-
nal (12) to input of Fourier’s filter (14),

e measure Fourier’s filter output in the time mo-
ments 7 =qTp (¢=1,2,...),

e solve for each time moment 7 the frequency
equations (17), where &, = ai(¢Th), B, =
B (¢Th) (k = I,—n) , and find the estimates
di(qTy), ki(qTy) (i=0,n—1).

e examine the necessary conditions (18) for each ¢
t1ll these conditions hold for some ¢ = ¢; .

4. ITERATIVE CLOSED LOOP IDENTIFICATION
AND CONTROLLER REDESIGN

Algorithm 3.1 results in the plant coefficients estimates
d; =d; (¢17y) and ]27 =k;(¢1Th) (i:O,n——l,jZO,n——Q)
Formmg the polynomials d( ) ="+ dy_1s" "+
do , k( ) = kp_9s" 244 ko and soling the following
Bezout-Identity

d(s)g(s) — k(s)r(s) = ¥(s) (19)
the coefficients of controller
g B (s)u = P (s)y + % (20)

s), r?(s) = #(s) ) are found. Con-

(where g[z](s) =9
(20). Tt may be rewritten as

sider system (1),
WP (s)y = k(s)ol? 4 g2 (21)

where

P = d(s)gP(s) — k(s)rP(s) (22)

Making use of algorithm 3.1 for “a plant” (21) the fol-
lowing estimates are derived

i=0,2n—1 j=0,n—2 (23)

(In considered case the second sum of frequency equa-
tions (17) has upper limit equaled 2n — 1 and symbols

d; of this sum are substituted by go[ ] (z =0,2n — 1)
In addition, in expressions for Fourier’s ﬁlter (14) the

plant output y(¢) = ya(t)).

If the requirements (11):

Wi — e <e? i=0,2n—1 (24)
hold then N = 2 and the seeked polynomials of con-
troller (8) are

g(s) = g(s), 7(s) = rP(s) (25)

If the contrary is the case the numbers of the right parts
of inequalities (18) are decreased and algorithm 3.1 con-
tinues to operate until a new value ¢ = ¢4 > ¢» and
so on. If it does not lead to reaching the targeted con-
ditions (24) then it means that identification accuracy
obtained on the first interval is not sufficiently. Then
the FDP estimates of system (1), (21) are used for an
improvement of the first intervals results.

In fact, introduce a set of the following 2n numbers
for each interval (they are called FDP of a closed-loop
system for the i-th interval)

V,[f] = Re wgl] (Jwr) _

1 = tmwlf ooy

where

N (27)

It 1s easily shown that the plant and closed—loop system
FDP are linked as

6l ;[

. o vy —1—”%
@+ = TR T il
(v k) ¢ (wr) +w (Gur) - (28)
k= i=T, N
. [i](s) . 1
h [y = I [y = —
where w; " (s) (s wy (s) 0)

Substituting V,[f] and /,LE] (k: 1,n) by their esti-

mates V,Ez](qu) and uLz](qu) (k=10 ¢g=1qa,...)

(obtained on the outputs of Fourier’s filter (14) under



y(t) = ya(t)) the FDP estimates of plant oy (¢73),
Bx(¢Ty) (k=1,n, ¢ =gqa,...) are found from expres-
sion (28).

Using algorithm 3.1 the new estimates d; k;
(i =0,n—1, 7=0,n— 2) are found. Solving Bezout-
TIdentity (19) the coefficients of controller

gBl(s)u = rBl(s)y + o7

are derived and so on.

5. ADAPTATION PROCESS CONVERGENCE

Introduce the functions 2 (7), l,f(r) (k = I,—n) that
are the output of Fourier’s filter (14) excited by plant
output y(t) = ygp (t) (it means that in equation (1)
u(t) =0).

In the paper it is proved that frequency adaptation
process is convergent and therefore the aim (11) are
reached if there exists a time moment 7* such that the
following conditions hold

EOI<er, WOl r>m k=Tn (29)
where ¢ and EZ (k :L—n) are sufficiently small
given numbers.

Condition (29) may be examined by experiment.

6. EXAMPLE

In the paper the example illustrated efficiency of pro-
posed method of adaptation is given.
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